Internal Modifications (e.g., Filling, Endohedral Modifications, Etc.) Patents (Class 977/846)
  • Publication number: 20150050494
    Abstract: A multi-walled titanium-based nanotube array containing metal or non-metal dopants is formed, in which the dopants are in the form of ions, compounds, clusters and particles located on at least one of a surface, inter-wall space and core of the nanotube. The structure can include multiple dopants, in the form of metal or non-metal ions, compounds, clusters or particles. The dopants can be located on one or more of on the surface of the nanotube, the inter-wall space (interlayer) of the nanotube and the core of the nanotube. The nanotubes may be formed by providing a titanium precursor, converting the titanium precursor into titanium-based layered materials to form titanium-based nanosheets, and transforming the titanium-based nanosheets to multi-walled titanium-based nanotubes.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 19, 2015
    Applicant: The Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Shammi Akter Ferdousi, Wei Han
  • Patent number: 8835686
    Abstract: A method, an apparatus and an article of manufacture for attracting charged nanoparticles using a graphene nanomesh. The method includes creating a graphene nanomesh by generating multiple holes in graphene, wherein each of the multiple holes is of a size appropriate to a targeted charged nanoparticle, selectively passivating the multiple holes of the graphene nanomesh to form a charged ring in the graphene nanomesh by treating the graphene nanomesh with chemistry yielding a trap with an opposite charge to that of the targeted nanoparticle, and electrostatically attracting the target charged nanoparticle to the oppositely charged ring to facilitate docking of the charged nanoparticle to the graphene nanomesh.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Ahmed Maarouf, Glenn J. Martyna
  • Patent number: 8734748
    Abstract: A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: May 27, 2014
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Ching-Cheh Hung, Janet Hurst
  • Publication number: 20140103299
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Application
    Filed: December 16, 2013
    Publication date: April 17, 2014
    Inventor: ALEXANDER KASTALSKY
  • Publication number: 20140038350
    Abstract: A composition and method for forming a field effect transistor with a stable n-doped nano-component. The method includes forming a gate dielectric on a gate, forming a channel comprising a nano-component on the gate dielectric, forming a source over a first region of the nano-component, forming a drain over a second region of the nano-component to form a field effect transistor, and exposing a portion of a nano-component of a field effect transistor to dihydrotetraazapentacene, wherein dihydrotetraazapentacene is represented by the formula: wherein each of R1, R2, R3, and R4 comprises one of hydrogen, an alkyl group of C1 to C16 carbons, an alkoxy group, an alkylthio group, a trialkylsilane group, a hydroxymethyl group, a carboxylic acid group and a carboxylic ester group.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Bhupesh Chandra, George Stojan Tulevski
  • Patent number: 8580222
    Abstract: A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700° C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: November 12, 2013
    Assignee: Uchicago Argonne, LLC
    Inventors: Vilas G. Pol, Pappannan Thiyagarajan
  • Patent number: 8518608
    Abstract: A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: August 27, 2013
    Assignee: Los Alamos National Security, LLC
    Inventors: Gang Wu, Piotr Zelenay
  • Publication number: 20130214875
    Abstract: A graphene sheet is provided. The graphene sheet includes a carbon lattice and a spatial distribution of defects in the carbon lattice. The spatial distribution of defects is configured to tailor the buckling properties of the graphene sheet.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Inventors: William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Thomas A. Weaver, Lowell L. Wood, JR.
  • Publication number: 20130131383
    Abstract: A method, an apparatus and an article of manufacture for attracting charged nanoparticles using a graphene nanomesh. The method includes creating a graphene nanomesh by generating multiple holes in graphene, wherein each of the multiple holes is of a size appropriate to a targeted charged nanoparticle, selectively passivating the multiple holes of the graphene nanomesh to form a charged ring in the graphene nanomesh by treating the graphene nanomesh with chemistry yielding a trap with an opposite charge to that of the targeted nanoparticle, and electrostatically attracting the target charged nanoparticle to the oppositely charged ring to facilitate docking of the charged nanoparticle to the graphene nanomesh.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Ahmed Maarouf, Glenn J. Martyna
  • Publication number: 20130065050
    Abstract: A method of dispersing a metal or metal oxide within a CNT or CNT array, comprising exposing the CNT or CNT array to a solution containing a metal compound in a non-aqueous liquid; and removing the non-aqueous liquid from the CNT or CNT array. Nanoparticles were homogenously deposited within millimeter-long carbon nanotube array (CNTA). After modified with nanoparticles, CNTA changes from hydrophobic to hydrophilic. The hydrophilic composite electrodes present ideal capacitive behavior with high reversibility. The novel, nano-architectured composite demonstrates strong promise for high-performance thick and compact electrochemical supercapacitors.
    Type: Application
    Filed: May 19, 2011
    Publication date: March 14, 2013
    Applicant: The Governors of the University of Alberta
    Inventors: Weixing Chen, Xinwei Cui
  • Publication number: 20120288750
    Abstract: Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 15, 2012
    Inventors: Harold H. Kung, Xin Zhao, Cary M. Hayner, Mayfair C. Kung
  • Publication number: 20120264017
    Abstract: Methods of making a cathode element for an electrochemical cell. The methods comprise providing hollow carbon nanotubes and a sulfur source in a closed environment. Sulfur is deposited within an interior of the hollow carbon nanotube. The method includes cleaning an exterior surface of the carbon nanotubes and incorporating the carbon nanotubes into a cathode element. A cathodic material for a lithium-sulfur electrochemical cell is also provided. The material comprises a plurality of stacked-cone carbon nanotubes. Each nanotube defines a hollow interior and has a substantially continuous exterior surface area. Elemental sulfur is disposed within the hollow interior of each nanotube.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 18, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: GHOLAM-ABBAS NAZRI, DAVID BURTON, MARYAM NAZRI, PATRICK D. LAKE, ANDREW PALMER, MAX L. LAKE
  • Patent number: 8246886
    Abstract: A method and system for aligning nanotubes within an extensible structure such as a yarn or non-woven sheet. The method includes providing an extensible structure having non-aligned nanotubes, adding a chemical mixture to the extensible structure so as to wet the extensible structure, and stretching the extensible structure so as to substantially align the nanotubes within the extensible structure. The system can include opposing rollers around which an extensible structure may be wrapped, mechanisms to rotate the rollers independently or away from one another as they rotate to stretch the extensible structure, and a reservoir from which a chemical mixture may be dispensed to wet the extensible structure to help in the stretching process.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: August 21, 2012
    Assignee: Nanocomp Technologies, Inc.
    Inventors: David S. Lashmore, Robert Braden, Anastasios John Hart, John Welch
  • Publication number: 20120181486
    Abstract: A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700° C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.
    Type: Application
    Filed: March 16, 2012
    Publication date: July 19, 2012
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Vilas G. Pol, Pappannan Thiyagarajan
  • Publication number: 20120092758
    Abstract: A nanocomposite, comprising single-wall and/or multi-wall one-dimensional nanomaterials, and at least one nanooxide of at least one transition metal, said nanooxide filling said nanotubes and covering their walls. A process for preparing such a nanocomposite and an optical limiting device comprising such a nanocomposite in suspension in a medium that is transparent to visible and infrared radiation are disclosed.
    Type: Application
    Filed: February 16, 2010
    Publication date: April 19, 2012
    Applicants: Institut Franco-Allemand De Recherche De Saint Louis, Centre National De La Recherche Scientifique - CNRS
    Inventors: Valerie Keller-Spitzer, Anne Teissier, Yves Lutz, Jean-Pierre Moeglin, Olivier Muller, Fabrice Lacroix
  • Publication number: 20120035388
    Abstract: This invention provides a platinum/carbon nanotube catalyst applicable to heterogeneous asymmetric hydrogenation, which is fabricated by supporting platinum on carbon nanotube carriers. The catalyst is prepared by the steps of: heating purified carbon nanotubes in nitric acid, filtering and washing the same with water until pH value of the filtrate becomes neutral, drying the carbon nanotubes; immersing the carbon nanotube carriers obtained in an aqueous chloroplatinic acid solution and carrying out ultrasonic treatment at room temperature; immersing the mixture of the carbon nanotubes and the aqueous chloroplatinic acid solution under stirring; drying the material by heating to 110° C. from room temperature and maintaining this temperature; grinding the product to fine powders, reducing the fine powders with an aqueous sodium formate solution under a heating condition, filtering and washing the product with deionized water, and drying the product.
    Type: Application
    Filed: May 11, 2010
    Publication date: February 9, 2012
    Applicant: Dalian Institute of Chemical Physics Chinese Academy of Sciences
    Inventors: Can Li, Zhijian Chen
  • Patent number: 8110170
    Abstract: Provided are a conductive polymer-carbon nanotube composite including a carbon nanotube and a conductive polymer filled therein, and a method of manufacturing the same. The conductive polymer-carbon nanotube composite where a conductive polymer is filled in a carbon nanotube is manufactured by introducing a monomer of the conductive polymer into the carbon nanotube using a supercritical fluid technique and polymerizing the monomer. The conductive polymer-carbon nanotube composite is a novel nano-structure material which can overcome limitations that conventional materials may have, and thus can be applied to various applications such as sensors, electrode materials, nanoelectronic materials, etc.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: February 7, 2012
    Assignee: SNU R&DB Foundation
    Inventors: Yung-Woo Park, Johannes Steinmetz
  • Patent number: 8093174
    Abstract: A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: January 10, 2012
    Assignee: NEC Corporation
    Inventors: Ryota Yuge, Masako Yudasaka, Sumio Iijima
  • Patent number: 7879309
    Abstract: A method is disclosed whereby a functional nanomaterial such as a monolayer carbon nanotube, a monolayer boron nitride nanotube, a monolayer silicon carbide nanotube, a multilayer carbon nanotube with the number of layers controlled, a multilayer boron nitride nanotube with the number of layers controlled, a multilayer silicon carbide nanotube with the number of layers controlled, a metal containing fullerene, and a metal containing fullerene with the number of layers controlled is produced at a high yield. According to the method, when a multilayer carbon nanotube (3) is formed by a chemical vapor deposition or a liquid phase growth process, an endothermic reaction aid (H2S) is introduced in addition to a primary reactant (CH4, H2) in the process to form a monolayer carbon nanotube (4).
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: February 1, 2011
    Assignee: Japan Science and Technology Agency
    Inventors: Tadashi Mitsui, Takashi Sekiguchi, Mika Gamo, Yafei Zhang, Toshihiro Ando
  • Patent number: 7781756
    Abstract: A molecular structure. In one embodiment, the molecular structure includes a nanotube formed with a plurality of carbon atoms having a first end, an opposite, second end, and a body portion defined therebetween, wherein the body portion has an interior surface defining a cavity, an opposite, exterior surface and a longitudinal axis therethrough the cavity, and a porphyrin molecule having a plurality of carbon atoms and a first plurality of hydrogen atoms, wherein at its original state the porphyrin molecule has a plurality of pyrrole units and each pyrrole unit is coupled to another pyrrole unit through a methine bridge so as to form a ring structure with a second plurality of hydrogen atoms positioned peripherally along the ring structure. The porphyrin molecule is chemically coupled to the interior surface of the nanotube such that at least one of the second plurality of hydrogen atoms positioned peripherally along the ring structure is replaced by a carbon atom of the nanotube.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: August 24, 2010
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Jerry A. Darsey, Dan Alexander Buzatu, Freddy Nguyen
  • Publication number: 20100196780
    Abstract: An anode structure comprises an array of carbon nanotubes having a diffusion side and a membrane side, and catalyst particles interspersed on inner surfaces of the membrane side of the carbon nanotubes. The carbon nanotubes have an average diameter greater than the size of the hydrogen molecule but smaller than the size of the carbon monoxide molecule. Thus, hydrogen flowing toward the catalyst particles interspersed inside the carbon nanotubes are able to go through, while the flow of trace amounts of carbon monoxide contained in the hydrogen is blocked, preventing the poisoning of the catalyst particles by the carbon monoxide. A fuel cell utilizing the anode structure and a method for manufacturing the anode structure are also disclosed.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Inventor: Mark Kaiser
  • Patent number: 7682213
    Abstract: An electron emission device is provided which has sufficient on/off characteristics and is capable of efficiently emitting electrons with a low voltage. An electron emission device includes a substrate, a cathode electrode, a gate electrode, which are arranged on the substrate, an insulation layer covering the surface of the cathode electrode, and a dipole layer formed by terminating the surface of the insulation layer with hydrogen.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: March 23, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryoji Fujiwara, Yoji Teramoto
  • Publication number: 20090218226
    Abstract: Separation device of molecules and production method thereof. A molecule is separated from a liquid sample containing said molecule and at least one additional molecule having a larger hydrodynamic diameter than the hydrodynamic diameter of the molecule to be separated, by means of a separation device comprising a substrate, at least one circulation channel arranged in said substrate, and at least one nanotube associated with said molecule to be separated and formed on a free surface of the substrate. Separation is achieved by means of the internal channel of a nanotube, such as a carbon nanotube, presenting an effective diameter chosen in predetermined and controlled manner. The effective diameter of the internal channel is chosen such as to be larger than the hydrodynamic diameter of the molecule to be separated and smaller than the hydrodynamic diameter of the additional molecules of larger hydrodynamic diameters.
    Type: Application
    Filed: February 23, 2009
    Publication date: September 3, 2009
    Applicant: Commissariat A L'Energie Atomique
    Inventors: Jean-Christophe Coiffic, Frederic-Xavier Gaillard, Pierre Puget
  • Publication number: 20090123731
    Abstract: A melt-kneading method for filling material and elastomer or resin, characterized in that a filling material constituted by a filler, and an elastomer or resin (thermoplastic resin or thermosetting resin), are introduced from a material introduction part at the end of a melt-kneading part having a cylinder with a screw and a heater, and the molten elastomer or resin and filling material constituted by a filler are kneaded under the conditions of 1000 to 3000 rpm in the rotation speed of the screw and 1500 to 4500 sec?1 in shear speed to feed the mixture from the rear edge to tip of the screw to be trapped in a space provided at the tip of the screw, after which the mixture is moved from the space to the rear edge of the screw through a hole provided at the center of the screw, with the cycle process performed for a specified period based on recirculation using the screw.
    Type: Application
    Filed: February 8, 2008
    Publication date: May 14, 2009
    Inventors: Hiroshi SHIMIZU, Yongjin LI
  • Publication number: 20090117468
    Abstract: An anode active material that can prominently improve lifetime characteristics of a lithium secondary battery includes carbon nanotubes and silicon particles located in an internal space of the carbon nanotubes. The anode active material is manufactured by removing end caps of the carbon nanotubes to provide carbon nanotubes having lengths in the range of 0.1 to 10 ?m, and filling an interior space of the carbon nanotubes with silicon particles. In addition, a lithium secondary battery comprises an anode including an anode collector and the anode active material, a cathode including a cathode collector and cathode active material, and a separator interposed between the anode and the cathode. The anode active material includes carbon nanotubes and silicon particles located in internal spaces of the carbon nanotube.
    Type: Application
    Filed: July 29, 2008
    Publication date: May 7, 2009
    Applicant: Samsung SDI Co., Ltd
    Inventor: Jiyong EOM
  • Patent number: 7465430
    Abstract: There is described an apparatus for making metal oxide particles which are substantially free of coarse tail from an oxidizing agent and a metal reactant in a flow reactor. The apparatus can be a concentric tubular flow reactor comprising a substantially funnel-shaped reactant contacting region located adjacent to a reaction zone which is able to direct a flow of a hot oxidizing agent towards a flow of the metal reactant to form a reaction stream which flows downstream into a reaction zone, whereby the hot oxidizing agent of the reaction stream is able to surround the flow of metal reactant sufficient to prevent the metal reactant from contacting the wall of the reactant contacting region and forming scale on the wall.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: December 16, 2008
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Juergen Kurt Plischke, Stephan Claude De La Veaux, Scott Rickbeil Frerichs, Jodi Lynn Witt, Christian Normand
  • Publication number: 20080284463
    Abstract: A semiconductor device comprising a programming circuit that includes an active device on or in a substrate and a programmable electronic component on the substrate. The programmable electronic component includes at least one carbon nanotube having a segment with an adjusted diameter. The programmable electronic component has a value that depends upon the adjusted diameter. The programming circuit also includes interconnects that couple the active device to the programmable electronic component. The active device is configured to control a current transmitted to the programmable electronic component.
    Type: Application
    Filed: May 17, 2007
    Publication date: November 20, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Andrew Marshall, Tito Gelsomini, Harvey Edd Davis
  • Patent number: 7438885
    Abstract: A novel method for simultaneously forming and filling and decorating carbon nanotubes with palladium nanoparticles is disclosed. Synthesis involves preparing a palladium chloride (PdCl2) solution in a container, having two graphite electrodes, then immersing the graphite electrode assembly, into the PdCl2 solution; connecting the graphite electrodes to a direct current power supply; bringing the electrodes into contact with each other to strike an arc; separating the electrodes to sustain the arc inside the solution; putting the container with electrode assembly in a water-cooled bath; and collecting Pd-nanoparticles encapsulated in carbon nanotubes and carbon nanotubes decorated with Pd-nanoparticles. The temperature at the site of the arc-discharge is greater than 3000° C. At these temperatures, the palladium is ionized into nanoparticles and the graphite electrodes generate layers of graphene (carbon), which roll away from the anode and encapsulate or entrap the Pd-nanoparticles.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: October 21, 2008
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Sudipta Seal, Suresh C. Kuiry, Debasis Bera, Meyya Meyyappan, Matthew Luke McCutchen
  • Patent number: 7374731
    Abstract: A reaction apparatus for producing vapor-grown carbon fibers (VGCF) and a continuous production system for producing VGCF are disclosed. The VGCF reaction apparatus is featured in installing a plurality of holes on the upper portion of inner tubes; and filling thermally conductive material in the areas between the inner tubes and the outer tube. The continuous production system includes the reaction apparatus, a product collection system and a carrier-gas collecting system, wherein carbon fibers produced by the reaction apparatus fall into the product collection system, and in the product collection system, a collection bin full-loaded with carbon fibers is pushed out and an empty bin is pushed into the collection chamber under PLC control as well as atmosphere replacement with inert gas, thereby continuously producing VGCF.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: May 20, 2008
    Assignee: Yonyu Plastics Co., Ltd.
    Inventors: Chun-Shan Wang, Ya-Jen Huang, Yen-Chu Tan, Kai-Jen Ko, Shih-Peng Yang
  • Patent number: 7326633
    Abstract: An anisotropic conductive film (10) is used for bonding a semiconductor component to a circuit board. The anisotropic conductive film includes an insulative adhesive film (12) and a plurality of nano-scaled conductive particles (14). The nano-scaled conductive particles are dispersed in the insulative adhesive film. The nano-scaled conductive particles are a nanotubes each containing metal particles and polyaniline therein. Because the sizes of the nano-scaled conductive particle are very small, more of the nano-scaled conductive particles can be compressed between two corresponding contacts of the semiconductor component and the circuit board. The interface area between the two corresponding contacts is correspondingly enlarged. In addition, the polyaniline both in the opening and inside of the nanotubes also has a more favorable viscosity. The bonding effect between a semiconductor component and a circuit board is improved.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: February 5, 2008
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Ga-Lane Chen
  • Patent number: 7273652
    Abstract: Production of hollow carbon fibers and hollow carbon particles includes baking and carbonization of polymer particles having a specified volume after deformation. A metal-deposited carbon fiber with metal deposited inside and/or outside the hollow carbon fiber is applicable to electron discharge devices. The thickness and crystallinity of the graphite layer can be freely controlled. Since almost no by-product is generated, separation and refining using a solvent is not required. A hollow carbon particle of desired shape can be produced at a high yield rate. The hollow carbon fiber represented by a carbon nano-tube can be controlled in such a way that a low resistance and uniform shape are provided so that there is an increase in the amount of electrons discharged from the hollow carbon fiber. Use of this hollow carbon fiber as an electron discharge source provides an excellent electron discharge device characterized by stable pixels.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: September 25, 2007
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Shinji Takeda, Noriyuki Taguchi, Kazumi Kokaji, Osamu Hirai
  • Patent number: 7160530
    Abstract: Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: January 9, 2007
    Assignee: Midwest Research Institute
    Inventors: Anne C. Dillon, Michael J. Heben, Thomas Gennett, Philip A. Parilla