Abstract: A vacuum scavenged spindle and disk clamp assembly decreases particulate contamination during testing and manufacturing of disks such as hard drive platters. A vacuum shroud is sealed to a casing and fitted to a clamp body attached to or integral with the spindle rotor, with the spindle rotor and the clamp body being rotatable. A first scavenging passageway pulls airflow from an interior region of the vacuum shroud, including particulates scavenged from the air bearing between the spindle rotor and the spindle stator. A second scavenging passageway extends from the interior region of the vacuum shroud through the clamp body to a hollow core of the disk clamp. A further scavenging passageway extends through the clamp body to a clamping region. Particulates from the spindle clamp are scavenged by airflow through the further scavenging passageway and the second scavenging passageway. A grounding brush may be attached to the vacuum shroud.
Abstract: A spindle motor includes a shaft arranged to extend in an axial direction, and a base portion arranged to define a portion of a housing, and including a through hole in which the shaft is inserted. A fixing region is defined between an inner circumferential portion of the base portion and a lower portion of the shaft. The fixing region includes a press-fitting region and an adhesion region defined on a lower side of the press-fitting region and in which a seal gap is defined between the inner circumferential portion of the base portion and the lower portion of the shaft. The seal gap is arranged to gradually decrease in radial width with increasing height. The seal gap is arranged to include an adhesive arranged therein over an entire circumference thereof.
Abstract: A method and apparatus for a filter for filtering airborne particles present within an enclosure containing equipment sensitive is provided. The filter may be used within the enclosure of a hard disk drive. The filter may comprise a magnetic plate enclosed by a protective layer, which in turn may be enclosed by a non-woven scrim. The magnetic plate has a magnetic property that generates a magnetic field attractive to paramagnetic particles within the enclosure. The protective layer forms a barrier that prevents particles of the magnetic plate from entering into the enclosure. The non-woven scrim may, but need not, have an adhesive property which traps non-paramagnetic particles coming in contact with the non-woven scrim. If the non-woven scrim lacks an adhesive property, then at least a portion of the non-woven scrim may be coated with an adhesive layer which traps non-paramagnetic particles coming in contact with the non-woven scrim.
Type:
Application
Filed:
January 7, 2009
Publication date:
July 8, 2010
Inventors:
Yeow Yong Chan, Shaoyong Liu, Jing Fang Pan, Yi Zhao Yao