Microelectronic assemblies

- Intel

Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface; a first die having a first surface and an opposing second surface, wherein the first die is embedded in a first dielectric layer, wherein the first surface of the first die is coupled to the second surface of the package substrate, and wherein the first dielectric layer is between a second dielectric layer and the second surface of the package substrate; a second die having a first surface and an opposing second surface, wherein the second die is embedded in the second dielectric layer, and wherein the first surface of the second die is coupled to the second surface of the package substrate by a conductive pillar; and a shield structure that at least partially surrounds the conductive pillar.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to Greek Patent Application No. 20180100420, filed Sep. 14, 2018, entitled “MICROELECTRONIC ASSEMBLIES,” the contents of which are hereby incorporated by reference in their entirety.

BACKGROUND

Integrated circuit (IC) dies are conventionally coupled to a package substrate for mechanical stability and to facilitate connection to other components, such as circuit boards. The interconnect pitch achievable by conventional substrates is constrained by manufacturing, materials, thermal considerations, and signal performance, among others.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments are illustrated by way of example, not by way of limitation, in the figures of the accompanying drawings.

FIG. 1A is a side, cross-sectional view of an example microelectronic assembly, in accordance with various embodiments.

FIG. 1B is a magnified, three-dimensional perspective view of an example arrangement of two shielded multi-level interconnects, with the front portion of the shield removed, in a microelectronic assembly, in accordance with various embodiments.

FIGS. 2A-2C are side, cross-sectional views of example arrangements of a microelectronic assembly, in accordance with various embodiments.

FIGS. 3A-3F are top view schematics showing example arrangements of shielded multi-level interconnects in a microelectronic assembly, in accordance with various embodiments.

FIGS. 4A-4D are side, cross-sectional views of various stages in an example process for manufacturing the microelectronic assembly of FIG. 1A, in accordance with various embodiments.

FIG. 5 is a side, cross-sectional view of an example microelectronic assembly, in accordance with various embodiments.

FIGS. 6A-6D are side, cross-sectional views of various stages in an example process for manufacturing the microelectronic assembly of FIG. 5, in accordance with various embodiments.

FIGS. 7A-7B are side, cross-sectional views of example microelectronic assemblies, in accordance with various embodiments.

FIG. 8 is a top view of a wafer and dies that may be included in a microelectronic assembly, in accordance with any of the embodiments disclosed herein.

FIG. 9 is a cross-sectional side view of an IC device that may be included in a microelectronic assembly, in accordance with any of the embodiments disclosed herein.

FIG. 10 is a cross-sectional side view of an IC device assembly that may include a microelectronic assembly, in accordance with any of the embodiments disclosed herein.

FIG. 11 is a block diagram of an example electrical device that may include a microelectronic assembly, in accordance with any of the embodiments disclosed herein.

DETAILED DESCRIPTION

Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface; a first die having a first surface and an opposing second surface, wherein the first die is embedded in a first dielectric layer, wherein the first surface of the first die is coupled to the second surface of the package substrate, and wherein the first dielectric layer is between a second dielectric layer and the second surface of the package substrate; a second die having a first surface and an opposing second surface, wherein the second die is embedded in the second dielectric layer, and wherein the first surface of the second die is coupled to the second surface of the package substrate by a conductive pillar; and a shield structure, wherein the shield structure at least partially surrounds the conductive pillar.

Communicating large numbers of signals between two or more dies in a multi-die IC package is challenging due to the increasingly small size of such dies, thermal constraints, and power delivery constraints, among others. Various ones of the embodiments disclosed herein may help achieve reliable attachment of multiple IC dies at a lower cost, with improved power efficiency, with higher bandwidth, and/or with greater design flexibility, relative to conventional approaches. Conventional approaches may reduce signal crosstalk, signal coupling, and insertion loss by increasing the ratio of ground connections to signal connections, which is likely to lower the bandwidth density, increase the die area, and add latency due to the increased signal distance. Various ones of the microelectronic assemblies disclosed herein may exhibit better power delivery and signal speed while reducing the size of the package relative to conventional approaches. The microelectronic assemblies disclosed herein may be particularly advantageous for small and low-profile applications in computers, tablets, industrial robots, and consumer electronics (e.g., wearable devices).

In the following detailed description, reference is made to the accompanying drawings that form a part hereof wherein like numerals designate like parts throughout, and in which is shown, by way of illustration, embodiments that may be practiced. It is to be understood that other embodiments may be utilized, and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description is not to be taken in a limiting sense.

Various operations may be described as multiple discrete actions or operations in turn, in a manner that is most helpful in understanding the claimed subject matter. However, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations may not be performed in the order of presentation. Operations described may be performed in a different order from the described embodiment. Various additional operations may be performed, and/or described operations may be omitted in additional embodiments.

For the purposes of the present disclosure, the phrase “A and/or B” means (A), (B), or (A and B). For the purposes of the present disclosure, the phrase “A, B, and/or C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B, and C). The drawings are not necessarily to scale. Although many of the drawings illustrate rectilinear structures with flat walls and right-angle corners, this is simply for ease of illustration, and actual devices made using these techniques will exhibit rounded corners, surface roughness, and other features.

The description uses the phrases “in an embodiment” or “in embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present disclosure, are synonymous. As used herein, a “package” and an “IC package” are synonymous, as are a “die” and an “IC die.” The terms “top” and “bottom” may be used herein to explain various features of the drawings, but these terms are simply for ease of discussion, and do not imply a desired or required orientation. As used herein, the term “insulating” means “electrically insulating,” unless otherwise specified.

When used to describe a range of dimensions, the phrase “between X and V” represents a range that includes X and Y. For convenience, the phrase “FIG. 4” may be used to refer to the collection of drawings of FIGS. 4A-4D, the phrase “FIG. 6” may be used to refer to the collection of drawings of FIGS. 6A-6D, etc. Although certain elements may be referred to in the singular herein, such elements may include multiple sub-elements. For example, “an insulating material” may include one or more insulating materials. As used herein, a “conductive contact” may refer to a portion of conductive material (e.g., metal) serving as an electrical interface between different components; conductive contacts may be recessed in, flush with, or extending away from a surface of a component, and may take any suitable form (e.g., a conductive pad or socket, or portion of a conductive line or via).

FIG. 1A is a side, cross-sectional view of a microelectronic assembly 100, in accordance with various embodiments. The microelectronic assembly 100 may include a package substrate 102 coupled to a multi-layer die subassembly 104 having multiple interconnects. As used herein, the term a “multi-layer die subassembly” may refer to a composite die having two or more stacked dielectric layers with one or more dies embedded in each layer, and conductive interconnects and/or conductive pathways connecting the one or more dies, including dies in non-adjacent layers. As used herein, the terms a “multi-layer die subassembly” and a “composite die” may be used interchangeably. As used herein, the term “multi-level interconnect” may refer to an interconnect between a first component and a second component where the first component and the second component are not in adjacent layers, or may refer to an interconnect that spans one or more layers (e.g., an interconnect between a first die in a first layer and a second die in a third layer, or an interconnect between a package substrate and a die in a second layer). As shown in FIG. 1A, the multi-layer die subassembly 104 may include two layers. In particular, the multi-layer die subassembly 104 may include a first layer 104-1 having a die 114-2, and a second layer 104-2 having a die 114-3, a die 114-5, and a die 114-6. The die 114-2 in the first layer 104-1 may be coupled to the package substrate 102 by die-to-package substrate (DTPS) interconnects 150, and may be coupled to the dies 114-3, 114-5, 114-6 in the second layer 104-2 by die-to-die (DTD) interconnects 130. The dies 114-3 and 114-6 in the second layer 104-2 may be coupled to the package substrate by multi-level (ML) interconnects 152. The ML interconnects 152 may be at least partially surrounded by a shield structure 154. The shield structure 154 may be coupled to a ground connection 158-1 on the package substrate, and to a ground connection 158-2 on the dies 114-3 and 114-5. In some embodiments, the shield structure 154 may be coupled to a ground connection 158-2 on a die 114 or may be coupled to a ground connection 158-1 on a package substrate. In some embodiments, as shown in FIG. 1A, a shield structure 154 may be coupled to a ground connection 158-1 on a package substrate at a first end and coupled to a ground connection 158-2 on a die at an opposing second end.

In particular, the top surface of the package substrate 102 may include a set of conductive contacts 146. The die 114-2 may include a set of conductive contacts 122 on the bottom surface of the die, and a set of conductive contacts 124 on the top surface of the die. The dies 114-3, 114-5, 114-6 may include a set of conductive contacts 122 on the bottom surface of the die. As shown for the die 114-2, the conductive contacts 122 on the bottom surface of the die 114-2 may be electrically and mechanically coupled to the conductive contacts 146 on the top surface of the package substrate 102 by ML interconnects 152, and the conductive contacts 124 on the top surface of the die 114-2 may be electrically and mechanically coupled to the conductive contacts 122 on the bottom surface of the dies 114-3, 114-5, and 114-6 by DTD interconnects 130. As shown for the dies 114-3 and 114-5, the conductive contacts 122 on the bottom surface of the die 114-3 further may be electrically and mechanically coupled to the conductive contacts 146 on the top surface of the package substrate by ML interconnects 152.

The ML interconnects 152 may be formed of any appropriate conductive material, such as copper, silver, nickel, gold, aluminum, or other metals or alloys, for example. The ML interconnects 152 may be formed using any suitable process, including, for example, the process described with reference to FIG. 4. In some embodiments, the ML interconnects 152 disclosed herein may have a pitch between 50 microns and 500 microns. As used herein, pitch is measured center-to-center (e.g., from a center of a ML interconnect to a center of an adjacent ML interconnect). The ML interconnects 152 may provide a more direct conductive pathway between one or more dies 114 of the multi-layer die subassembly 104 and the package substrate 102, or a more direct conductive pathway between one or more dies 114 of the multi-layer die subassembly 104, as shown in FIG. 5. The more direct connections of the ML interconnections (i.e., shorter conductive pathways) may improve the performance of the microelectronic assembly by increasing bandwidth, by reducing resistance, by lowering parasitics, and/or by more efficiently delivering power from the package substrate 102 to the one or more dies 114. The ML interconnects 152 may have any suitable size and shape. In some embodiments, the ML interconnects 152 may be formed as pillars having a circular, rectangular, or other shaped cross-section. In some embodiments, the ML interconnects 152 may have a thickness (e.g., z-height) between 50 microns and 1000 microns and a cross-section between 20 and 500 microns.

The shield structure 154 may be formed of any appropriate conductive material, such as copper, silver, nickel, gold, aluminum, or other metals or alloys, for example. The shield structure 154 may be formed using any suitable process, including, for example, the process described with reference to FIG. 4. A shield structure 154 may be formed to at least partially surround a ML interconnect 152. In some embodiments, the shield structure 154 may be formed to completely surround an individual ML interconnect 152. As described in detail below with reference to FIG. 3, the shield structure 154 may be a continuous structure or a non-continuous structure. The shield structure 154 may be coupled to a ground connection on the package substrate (e.g., a ground bump), and/or a ground connection on a die (e.g., a ground bump). The shield structure may have any suitable dimensions and shape to shield the ML interconnects to reduce insertion loss and/or cross talk between the signals transmitted via the ML interconnects 152 and may reduce degradation of signal performance. In some embodiments, the dies 114-3 and 114-5 may operate at high speed signaling frequencies (e.g., high speed signaling frequencies of 50 GHz or greater, or super high speed signaling frequencies of 100 GHz or greater). The high speed signaling may be more prone to signal coupling and crosstalk, which may be reduced by ground shielding.

In some embodiments, the package substrate 102 may be formed using a lithographically defined via packaging process. In some embodiments, the package substrate 102 may be manufactured using standard organic package manufacturing processes, and thus the package substrate 102 may take the form of an organic package. In some embodiments, the package substrate 102 may be a set of redistribution layers formed on a panel carrier by laminating or spinning on a dielectric material, and creating conductive vias and lines by laser drilling and plating. In some embodiments, the package substrate 102 may be formed on a removable carrier using any suitable technique, such as a redistribution layer technique. Any method known in the art for fabrication of the package substrate 102 may be used, and for the sake of brevity, such methods will not be discussed in further detail herein.

In some embodiments, the package substrate 102 may be a lower density medium and the die 114 (e.g., the die 114-2) may be a higher density medium or have an area with a higher density medium. As used herein, the term “lower density” and “higher density” are relative terms indicating that the conductive pathways (e.g., including conductive interconnects, conductive lines, and conductive vias) in a lower density medium are larger and/or have a greater pitch than the conductive pathways in a higher density medium. In some embodiments, a higher density medium may be manufactured using a modified semi-additive process or a semi-additive build-up process with advanced lithography (with small vertical interconnect features formed by advanced laser or lithography processes), while a lower density medium may be a printed circuit board (PCB) manufactured using a standard PCB process (e.g., a standard subtractive process using etch chemistry to remove areas of unwanted copper, and with coarse vertical interconnect features formed by a standard laser process). In other embodiments, the higher density medium may be manufactured using semiconductor fabrication process, such as a single damascene process or a dual damascene process.

In some embodiments, as shown on the die 114-2, the DTPS interconnects 150 may have a different pitch on the same die. In another example, the die 114-2 on the top surface may have DTD interconnects 130 that may have a different pitch on the same surface. A die 114 that has interconnects 130 of different pitches at a same surface may be referred to as a mixed-pitch die 114. In some embodiments, the DTD interconnects may have a pitch between 5 microns and 200 microns (e.g., between 5 microns and 100 microns). In some embodiments, the DTPS interconnects may have a pitch between 50 microns and 800 microns (e.g., between 100 microns and 500 microns).

Although FIG. 1A shows the die 114-2 as double-sided dies and the dies 114-3, 114-5, and 114-6 as single-sided dies, the dies 114 may be a single-sided or a double-sided die and may be a single-pitch die or a mixed-pitch die. In some embodiments, additional components may be disposed on the top surface of the dies 114-3, 114-5, and/or 114-6. Additional passive components, such as surface-mount resistors, capacitors, and/or inductors, may be disposed on the top surface or the bottom surface of the package substrate 102, or embedded in the package substrate 102. In this context, a double-sided die refers to a die that has connections on both surfaces. In some embodiments, a double-sided die may include through silicon vias (TSVs) to form connections on both surfaces. The active surface of a double-sided die, which is the surface containing one or more active devices and a majority of interconnects, may face either direction depending on the design and electrical requirements.

Placing dies in separate layers such that the dies at least partially overlap may reduce routing congestion and may improve utilization of the dies by enabling a die in a non-adjacent layer to be connected to a package substrate by any of the ML interconnects disclosed herein. In some embodiments, a first die may be connected to a second die in a non-adjacent layer by any of the ML interconnects disclosed herein. The dies 114 may be singled-sided dies or double-sided dies and may be a single-pitch die or a mixed-pitch die.

Although FIG. 1A shows the dies 114 in a particular arrangement, the dies 114 may be in any suitable arrangement. For example, a die 114-3 may extend over a die 114-2 by an overlap distance 191, and a die 114-5 may extend over a die 114-2 by an overlap distance 193. The overlap distances 191, 193 may be any suitable distance. In some embodiments, the overlap distance 191, 193 may be between 0.5 millimeters and 50 millimeters (e.g., between 0.75 millimeters and 20 millimeters, or approximately 10 millimeters). In some embodiments, the overlap distance 191, 193 may be between 0.25 millimeters and 25 millimeters. In some embodiments, the overlap distance 191, 193 may be between 0.25 millimeters and 5 millimeters.

In the embodiment of FIG. 1A, the die 114-2 may provide high density interconnect routing in a localized area of the microelectronic assembly 100. In some embodiments, the presence of the die 114-2 may support direct chip attach of fine-pitch semiconductor dies (e.g., the die 114-6) that cannot be attached entirely directly to the package substrate 102. In particular, as discussed above, the die 114-2 may support trace widths and spacings that are not achievable in the package substrate 102. The proliferation of wearable and mobile electronics, as well as Internet of Things (IoT) applications, are driving reductions in the size of electronic systems, but limitations of the PCB manufacturing process and the mechanical consequences of thermal expansion during use have meant that chips having fine interconnect pitch cannot be directly mounted to a PCB. Various embodiments of the microelectronic assemblies 100 disclosed herein may be capable of supporting chips with high density interconnects and chips with low-density interconnects without sacrificing performance or manufacturability.

The microelectronic assembly 100 of FIG. 1A may also include a circuit board (not shown). The package substrate 102 may be coupled to the circuit board by second-level interconnects at the bottom surface of the package substrate 102. The second-level interconnects may be any suitable second-level interconnects, including solder balls for a ball grid array arrangement, pins in a pin grid array arrangement or lands in a land grid array arrangement. The circuit board may be a motherboard, for example, and may have other components attached to it. The circuit board may include conductive pathways and other conductive contacts for routing power, ground, and signals through the circuit board, as known in the art. In some embodiments, the second-level interconnects may not couple the package substrate 102 to a circuit board, but may instead couple the package substrate 102 to another IC package, an interposer, or any other suitable component. In some embodiments, the multi-layer die subassembly may not be coupled to a package substrate 102, but may instead be coupled to a circuit board, such as a PCB.

The microelectronic assembly 100 of FIG. 1A may also include an underfill material 127. In some embodiments, the underfill material 127 may extend between one or more of the dies 114 and the package substrate 102 around the associated DTPS interconnects 150. In some embodiments, the underfill material 127 may extend between different ones of the dies 114 around the associated DTD interconnects 130. The underfill material 127 may be an insulating material, such as an appropriate epoxy material. In some embodiments, the underfill material 127 may include a capillary underfill, non-conductive film (NCF), or molded underfill. In some embodiments, the underfill material 127 may include an epoxy flux that assists with soldering the die 114-2 to the package substrate 102 when forming the DTPS interconnects 150, and then polymerizes and encapsulates the DTPS interconnects 150. The underfill material 127 may be selected to have a coefficient of thermal expansion (CTE) that may mitigate or minimize the stress between the dies 114 and the package substrate 102 arising from uneven thermal expansion in the microelectronic assembly 100. In some embodiments, the CTE of the underfill material 127 may have a value that is intermediate to the CTE of the package substrate 102 (e.g., the CTE of the dielectric material of the package substrate 102) and a CTE of the dies 114.

The DTPS interconnects 150 disclosed herein may take any suitable form. In some embodiments, a set of DTPS interconnects 150 may include solder (e.g., solder bumps or balls that are subject to a thermal reflow to form the DTPS interconnects 150). DTPS interconnects 150 that include solder may include any appropriate solder material, such as lead/tin, tin/bismuth, eutectic tin/silver, ternary tin/silver/copper, eutectic tin/copper, tin/nickel/copper, tin/bismuth/copper, tin/indium/copper, tin/zinc/indium/bismuth, or other alloys. In some embodiments, a set of DTPS interconnects 150 may include an anisotropic conductive material, such as an anisotropic conductive film or an anisotropic conductive paste. An anisotropic conductive material may include conductive materials dispersed in a non-conductive material. In some embodiments, an anisotropic conductive material may include microscopic conductive particles embedded in a binder or a thermoset adhesive film (e.g., a thermoset biphenyl-type epoxy resin, or an acrylic-based material). In some embodiments, the conductive particles may include a polymer and/or one or more metals (e.g., nickel or gold). For example, the conductive particles may include nickel-coated gold or silver-coated copper that is in turn coated with a polymer. In another example, the conductive particles may include nickel. When an anisotropic conductive material is uncompressed, there may be no conductive pathway from one side of the material to the other. However, when the anisotropic conductive material is adequately compressed (e.g., by conductive contacts on either side of the anisotropic conductive material), the conductive materials near the region of compression may contact each other so as to form a conductive pathway from one side of the film to the other in the region of compression.

The DTD interconnects 130 disclosed herein may take any suitable form. The DTD interconnects 130 may have a finer pitch than the DTPS interconnects 150 in a microelectronic assembly. In some embodiments, the dies 114 on either side of a set of DTD interconnects 130 may be unpackaged dies, and/or the DTD interconnects 130 may include small conductive bumps (e.g., copper bumps) attached to the conductive contacts 124 by solder. The DTD interconnects 130 may have too fine a pitch to couple to the package substrate 102 directly (e.g., to fine to serve as DTPS interconnects 150). In some embodiments, a set of DTD interconnects 130 may include solder. DTD interconnects 130 that include solder may include any appropriate solder material, such as any of the materials discussed above. In some embodiments, a set of DTD interconnects 130 may include an anisotropic conductive material, such as any of the materials discussed above. In some embodiments, the DTD interconnects 130 may be used as data transfer lanes, while the DTPS interconnects 150 may be used for power and ground lines, among others.

In some embodiments, some or all of the DTD interconnects 130 in a microelectronic assembly 100 may be metal-to-metal interconnects (e.g., copper-to-copper interconnects, or plated interconnects). In such embodiments, the conductive contacts 122, 124 on either side of the DTD interconnect 130 may be bonded together (e.g., under elevated pressure and/or temperature) without the use of intervening solder or an anisotropic conductive material. Any of the conductive contacts disclosed herein (e.g., the conductive contacts 122, 124, and/or 146) may include bond pads, solder bumps, conductive posts, or any other suitable conductive contact, for example. In some embodiments, a thin cap of solder may be used in a metal-to-metal interconnect to accommodate planarity, and this solder may become an intermetallic compound during processing. In some metal-to-metal interconnects that utilize hybrid bonding, a dielectric material (e.g., silicon oxide, silicon nitride, silicon carbide, or an organic layer) may be present between the metals bonded together (e.g., between copper pads or posts that provide the associated conductive contacts 124). In some embodiments, one side of a DTD interconnect 130 may include a metal pillar (e.g., a copper pillar), and the other side of the DTD interconnect may include a metal contact (e.g., a copper contact) recessed in a dielectric. In some embodiments, a metal-to-metal interconnect (e.g., a copper-to-copper interconnect) may include a noble metal (e.g., gold) or a metal whose oxides are conductive (e.g., silver). In some embodiments, a metal-to-metal interconnect may include metal nanostructures (e.g., nanorods) that may have a reduced melting point. Metal-to-metal interconnects may be capable of reliably conducting a higher current than other types of interconnects; for example, some solder interconnects may form brittle intermetallic compounds when current flows, and the maximum current provided through such interconnects may be constrained to mitigate mechanical failure.

In some embodiments, some or all of the DTD interconnects 130 in a microelectronic assembly 100 may be solder interconnects that include a solder with a higher melting point than a solder included in some or all of the DTPS interconnects 150. For example, when the DTD interconnects 130 in a microelectronic assembly 100 are formed before the DTPS interconnects 150 are formed (e.g., as discussed below with reference to FIG. 4), solder-based DTD interconnects 130 may use a higher-temperature solder (e.g., with a melting point above 200 degrees Celsius), while the DTPS interconnects 150 may use a lower-temperature solder (e.g., with a melting point below 200 degrees Celsius). In some embodiments, a higher-temperature solder may include tin; tin and gold; or tin, silver, and copper (e.g., 96.5% tin, 3% silver, and 0.5% copper). In some embodiments, a lower-temperature solder may include tin and bismuth (e.g., eutectic tin bismuth) or tin, silver, and bismuth. In some embodiments, a lower-temperature solder may include indium, indium and tin, or gallium.

In the microelectronic assemblies 100 disclosed herein, some or all of the DTPS interconnects 150 may have a larger pitch than some or all of the DTD interconnects 130. DTD interconnects 130 may have a smaller pitch than DTPS interconnects 150 due to the greater similarity of materials in the different dies 114 on either side of a set of DTD interconnects 130 than between the die 114 and the package substrate 102 on either side of a set of DTPS interconnects 150 as well as due to the lower warpage over wider range of attach temperatures. In particular, the differences in the material composition of a die 114 and a package substrate 102 may result in differential expansion and contraction of the die 114 and the package substrate 102 due to heat generated during operation (as well as the heat applied during various manufacturing operations). To mitigate damage caused by this differential expansion and contraction (e.g., cracking, solder bridging, etc.), the DTPS interconnects 150 may be formed larger and farther apart than DTD interconnects 130, which may experience less thermal stress due to the greater material similarity of the pair of dies 114 on either side of the DTD interconnects. In some embodiments, the DTPS interconnects 150 disclosed herein may have a pitch between 80 microns and 300 microns, while the DTD interconnects 130 disclosed herein may have a pitch between 7 microns and 100 microns.

Although FIG. 1A illustrates a specific number and arrangement of DTPS interconnects 150, DTD interconnects 130, and ML interconnects 152, these are simply illustrative, and any suitable number and arrangement may be used. The interconnects disclosed herein (e.g., DTPS, DTD, and ML interconnects) may be formed of any appropriate conductive material, such as copper, silver, nickel, gold, aluminum, or other metals or alloys, for example.

The multi-layer die subassembly 104 may include an insulating material (e.g., a dielectric material formed in multiple layers, as known in the art) to form the multiple layers and to embed one or more dies in a layer. In some embodiments, the insulating material of the multi-layer die subassembly may be a dielectric material, such as an organic dielectric material, a fire retardant grade 4 material (FR-4), bismaleimide triazine (BT) resin, polyimide materials, glass reinforced epoxy matrix materials, or low-k and ultra low-k dielectric (e.g., carbon-doped dielectrics, fluorine-doped dielectrics, porous dielectrics, and organic polymeric dielectrics). The multi-layer die subassembly 104 may include one or more ML interconnects through the dielectric material (e.g., including conductive vias and/or conductive pillars, as shown). The multi-layer die subassembly 104 may have any suitable dimensions. For example, in some embodiments, a thickness of the multi-layer die subassembly 104 may be between 100 um and 2000 um. In some embodiments, the multi-layer die assembly 104 may be a composite die, such as stacked dies. The multi-layer die subassembly 104 may have any suitable number of layers, any suitable number of dies, and any suitable die arrangement. For example, in some embodiments, the multi-layer die subassembly 104 may have between 3 and 20 layers of dies. In some embodiments, the multi-layer die subassembly 104 may include a layer having between 2 and 10 dies.

The package substrate 102 may include an insulating material (e.g., a dielectric material formed in multiple layers, as known in the art) and one or more conductive pathways to route power, ground, and signals through the dielectric material (e.g., including conductive traces and/or conductive vias, as shown). In some embodiments, the insulating material of the package substrate 102 may be a dielectric material, such as an organic dielectric material, a fire retardant grade 4 material (FR-4), BT resin, polyimide materials, glass reinforced epoxy matrix materials, organic dielectrics with inorganic fillers or low-k and ultra low-k dielectric (e.g., carbon-doped dielectrics, fluorine-doped dielectrics, porous dielectrics, and organic polymeric dielectrics). In particular, when the package substrate 102 is formed using standard PCB processes, the package substrate 102 may include FR-4, and the conductive pathways in the package substrate 102 may be formed by patterned sheets of copper separated by build-up layers of the FR-4. The conductive pathways in the package substrate 102 may be bordered by liner materials, such as adhesion liners and/or barrier liners, as suitable.

The dies 114 disclosed herein may include an insulating material (e.g., a dielectric material formed in multiple layers, as known in the art) and multiple conductive pathways formed through the insulating material. In some embodiments, the insulating material of a die 114 may include a dielectric material, such as silicon dioxide, silicon nitride, oxynitride, polyimide materials, glass reinforced epoxy matrix materials, or a low-k or ultra low-k dielectric (e.g., carbon-doped dielectrics, fluorine-doped dielectrics, porous dielectrics, organic polymeric dielectrics, photo-imageable dielectrics, and/or benzocyclobutene-based polymers). In some embodiments, the insulating material of a die 114 may include a semiconductor material, such as silicon, germanium, or a III-V material (e.g., gallium nitride), and one or more additional materials. For example, an insulating material may include silicon oxide or silicon nitride. The conductive pathways in a die 114 may include conductive traces and/or conductive vias, and may connect any of the conductive contacts in the die 114 in any suitable manner (e.g., connecting multiple conductive contacts on a same surface or on different surfaces of the die 114). Example structures that may be included in the dies 114 disclosed herein are discussed below with reference to FIG. 9. The conductive pathways in the dies 114 may be bordered by liner materials, such as adhesion liners and/or barrier liners, as suitable.

In some embodiments, the die 114 may include conductive pathways to route power, ground, and/or signals to/from other dies 114 included in the microelectronic assembly 100. For example, the die 114-2 may include TSVs, including a conductive material via, such as a metal via, isolated from the surrounding silicon or other semiconductor material by a barrier oxide), or other conductive pathways through which power, ground, and/or signals may be transmitted between the package substrate 102 and one or more dies 114 “on top” of the die 114-2 (e.g., in the embodiment of FIG. 1A, the dies 114-3, 114-5, and/or 114-6). In some embodiments, the die 114-2 may not route power and/or ground to the dies 114-3 and 114-5; instead, the die 114-2 may couple directly to power and/or ground lines in the package substrate 102 by ML interconnects 152. By allowing the dies 114-3 and 114-5 to couple directly to power and/or ground lines in the package substrate 102 via ML interconnects 152, such power and/or ground lines need not be routed through the die 114-2, allowing the die 114-2 to be made smaller or to include more active circuitry or signal pathways as well as supporting higher power and/or lower conduction losses by avoiding the requirement to go through the generally higher resistance TSVs. In some embodiments, the die 114-2 may only include conductive pathways, and may not contain active or passive circuitry. In other embodiments, the die 114-2 may include active or passive circuitry (e.g., transistors, diodes, resistors, inductors, and capacitors, among others). In some embodiments, the die 114-2 may include one or more device layers including transistors (e.g., as discussed below with reference to FIG. 9). When the die 114-2 includes active circuitry, power and/or ground signals may be routed through the package substrate 102 and to the die 114-2 through the conductive contacts 122 on the bottom surface of the die 114-2. In some embodiments, the die 114-2 in the first layer 104-1, also referred to herein as the “base die,” may be thicker than the dies 114-3, 114-5, 114-6 in the second layer 104-2 to enhance thermal spreading, to reduce stress on transistors, or be itself a composite die consisting of stacked dies. The die 114-2 of the microelectronic assembly 100 may be a single-sided die (in the sense that the die 114-2 only has conductive contacts on a single surface), or, as shown, may be a double-sided die (in the sense that the die 114-2 has conductive contacts 122, 124 on two surfaces (e.g., a top surface and a bottom surface)), and may be a mixed-pitch die (in the sense that the die 114-2 has sets of conductive contacts 122, 124 with different pitches).

The elements of the microelectronic assembly 100 may have any suitable dimensions. Only a subset of the accompanying figures are labeled with reference numerals representing dimensions, but this is simply for clarity of illustration, and any of the microelectronic assemblies 100 disclosed herein may have components having the dimensions discussed herein. In some embodiments, the thickness 164 of the package substrate 102 may be between 0.1 millimeters and 3 millimeters (e.g., between 0.3 millimeters and 2 millimeters, between 0.25 millimeters and 0.8 millimeters, or approximately 1 millimeter).

Many of the elements of the microelectronic assembly 100 of FIG. 1A are included in other ones of the accompanying figures; the discussion of these elements is not repeated when discussing these figures, and any of these elements may take any of the forms disclosed herein. In some embodiments, individual ones of the microelectronic assemblies 100 disclosed herein may serve as a system-in-package (SiP) in which multiple dies 114 having different functionality are included. In such embodiments, the microelectronic assembly 100 may be referred to as an SiP.

FIG. 1B is a magnified, three-dimensional perspective view of an example arrangement of two shielded ML interconnects, with the front portion of the shield removed, in a microelectronic assembly, in accordance with various embodiments. As described above with reference to FIG. 1A, the shield structure 154 may be formed of any appropriate conductive material and may be formed using any suitable process. As described in detail below with reference to FIG. 3, the shield structure 154 may be a continuous structure, such as a honeycomb or webbing structure, or may be a non-continuous structure, such as a wall, which may be planar or zigzagged, for example. The shield structure 154 may be coupled to a ground connection on the package substrate 102 (e.g., a ground bump 158), and/or a ground connection on a die (not shown). The shield structure 154 may have any suitable dimensions and shape. For example, the shield structure 154 may be lattice-shaped having a height (z-dimension, also referred to herein as z-height or thickness) between 100 microns and 1000 microns, and in some embodiments may be the same z-height as the ML interconnect 152 (e.g., may extend the full height of the conductive pillar). The shield structure may have any suitable width (x-dimension), for example, a width between 20 microns and 200 microns. The shield structure may have a spacing to the pillar (s-dimension) that may vary based on a characteristic impedance. The shield structure spacing to the pillar may further depend on the pillar diameter (x-dimension). For example, a smaller pillar diameter may result in a higher characteristic impedance for the same shield structure spacing. The ML interconnect 152 may be coupled at one end to a signal bump 151 on the package substrate 102 and may be connected to a top die (not shown) at an opposing end via a signal bump 153.

FIGS. 2A-2C are side, cross-sectional views of example ground coupling arrangements of a microelectronic assembly, in accordance with various embodiments, however, these arrangements are simply exemplary, and any suitable arrangements may be used. The shield structure 254 may be grounded by coupling the shield structure 254 to a ground connection 258. In some embodiments, as shown in FIG. 2A, the shield structure 254 may be coupled to a ground bump 258A via a bottom side redistribution layer 259A. As shown in FIG. 2B, the shield structure 254 may be coupled to a ground bump 258B via a top side redistribution layer 259B. As shown in FIG. 2C, the shield structure 254 may be coupled to a ground bump 258C via a conductive structure 259C between the shield structure 254 and a conductive ground pillar 253. As shown in FIGS. 2A-2B, the ground connection may be formed via a trace. As shown in FIG. 2C, the ground connection may be formed via a ground pillar 253.

FIGS. 3A-3F are top view schematics showing example arrangements of ML interconnects 352 and shield structures 158 that may be included in the microelectronic assembly 100 of FIG. 1A, however, these arrangements are simply exemplary, and any suitable arrangements may be used. FIG. 3A is a top view of signal ML interconnects 352A (e.g., signal pillars), ground ML interconnects 353A (e.g., ground pillars), and a shield structure 354A. Although the shield structure 354A is shown as a continuous grid structure having multiple connections to the ground ML interconnects 353A (e.g., ground pillars), the shield structure 354A may have any suitable geometrical shape (e.g., circular, triangular, rectangular, etc.). Although FIG. 3A illustrates the signal ML interconnects 352A and ground ML interconnects 353A as being arranged in a rectangular array, the ML interconnects 352A, 353A may be arranged in any suitable pattern (e.g., triangular, hexagonal, rectangular, etc.). Although FIG. 3A shows a 9:1 ratio of signal to ground connections, any suitable signal to ground ratio may be used to maintain good grounding performance depending on the operating frequency and the desired performance of the overall interconnect channel. FIG. 3B shows ML interconnects 352B arranged in an offset grid with a continuous shield structure 354B. The shield structure 254B surrounds each individual ML interconnect in a diamond shape and is coupled to three ground pillars 353B. FIG. 3C shows an arrangement of ML interconnects 352C surrounded by a shield structure 354C having a hexagonal or honeycomb shape around each individual ML interconnect. In some embodiments, as shown in FIG. 3C, the shield structure 354C may be coupled to a ground bump at the honey comb intersections 355C such that the ML interconnects 352C may be signal connections only. FIG. 3D shows a combination of ML interconnects where a portion of the ML interconnects 352D-1 are shielded and a portion of ML interconnects 352D-2 are not shielded. The shielded interconnects 352D-1 and the non-shielded interconnects 352D-2 may be disposed adjacent to each other. FIG. 3E shows a non-continuous or perforated shield structure 354E surrounding ML interconnects 352E. The shield structure 354E has openings 333 in the shield and may make the microelectronic assembly more manufacturable. FIG. 3F shows a shield structure arrangement for differential signaling where the ML interconnects 352F are the positive terminals 352F-1 and are the negative terminals 352F-2, and may share a shield structure 354F. The shield structure 354F may surround both the positively charged 352F-1 and negatively charged 352F-2 ML interconnects.

Any suitable techniques may be used to manufacture the microelectronic assemblies disclosed herein. For example, FIGS. 4A-4D are side, cross-sectional views of various stages in an example process for manufacturing the microelectronic assembly 100 of FIG. 1A, in accordance with various embodiments. Although the operations discussed below with reference to FIGS. 4A-4D (and others of the accompanying drawings representing manufacturing processes) are illustrated in a particular order, these operations may be performed in any suitable order. Additionally, although particular assemblies are illustrated in FIGS. 4A-4D (and others of the accompanying drawings representing manufacturing processes), the operations discussed below with reference to FIGS. 4A-4D may be used to form any suitable assemblies. In some embodiments, microelectronic assemblies 100 manufactured in accordance with the process of FIGS. 4A-4D (e.g., any of the microelectronic assemblies 100 disclosed herein) may have DTPS interconnects 150 that are solder interconnects, and DTD interconnects 130 that are non-solder interconnects (e.g., metal-to-metal interconnects or anisotropic conductive material interconnects). In the embodiment of FIGS. 4A-4D, the dies 114 may first be assembled into a composite die, and then the composite die may be coupled to the package substrate 102. This approach may allow for tighter tolerances in the formation of the DTD interconnects 130, and may be particularly desirable for relatively small dies 114 and for a composite die having three or more layers.

FIG. 4A illustrates an assembly 400A including a carrier 402 subsequent to forming conductive pillars 434 and shield structure 454 on the top surface of the carrier 402. The carrier 402 may include any suitable material for providing mechanical stability during manufacturing operations. The conductive pillars 434 and shield structure 454 may be disposed to form one or more de-population regions 455 in which no conductive pillars are present. The conductive pillars 434 and shield structure 454 may take the form of any of the embodiments disclosed herein, and may be formed using any suitable technique, for example, a lithographic process or an additive process, such as cold spray or 3-dimensional printing. For example, the conductive pillars 434 and shield structure 454 may be formed by depositing, exposing, and developing a photoresist layer on the top surface of the carrier 402. The photoresist layer may be patterned to form cavities in the shape of the conductive pillars and the shield structure. Conductive material, such as copper, may be deposited in the openings in the patterned photoresist layer to form the conductive pillars 434 and shield structure 454. The conductive material may be depositing using any suitable process, such as electroplating, sputtering, or electroless plating. The photoresist may be removed to expose the conductive pillars 434 and shield structure 454. In another example, a photo-imageable dielectric may be used to form the conductive pillars 434 and the shield structure 454. In some embodiments, a seed layer (not shown) may be formed on the top surface of the carrier 402 prior to depositing the photoresist material and the conductive material. The seed layer may be any suitable conductive material, including copper. The seed layer may be removed, after removing the photoresist layer, using any suitable process, including chemical etching, among others. In some embodiments, the seed layer may be omitted.

The shield structure 454 may be formed of any suitable conductive material, such as a metal. In some embodiments, the shield structure 454 may include copper. The conductive pillars 434 and shield structure 454 may have any suitable dimensions and may span one or more layers. For example, in some embodiments, an individual conductive pillars 434 may have an aspect ratio (height:diameter) between 1:1 and 4:1 (e.g., between 1:1 and 3:1). In some embodiments, an individual conductive pillar 434 may have a diameter between 10 microns and 300 microns. In some embodiments, an individual conductive pillar 434 may have a diameter between 50 microns and 400 microns. In some embodiments, an individual conductive pillar 434 may have a height between 100 and 500 microns. The conductive pillars 434 may have any suitable cross-sectional shape, for example, square, triangular, and oval, among others.

FIG. 4B illustrates an assembly 400B subsequent to placing the die 114-2 in the de-population region 455 of the assembly 400A (FIG. 4A). The die 114 may be placed on the carrier 402 using any suitable technique, such as die attach film (DAF). The die 114 may include a non-electrical material layer (not shown) or a carrier (not shown) on top of the die 114 that provides improved mechanical stability. The non-electrical material layer, which is an inactive portion of the die 114, may include silicon, ceramic, or quartz, among other materials. The non-electrical material layer may be attached to the die 114 using any suitable technique, including, for example, a release layer. The release layer (also referred to herein as a debonding layer) may include a temporary adhesive, or other material that releases when exposed to heat or light, for example. The non-electrical material layer may be removed using any suitable technique, including, for example, grinding, etching, such as reactive ion etching (RIE) or chemical etching, or, if the debonding layer includes a photo-reactive or thermally-reactive material, applying light or heat. The carrier may include any suitable material to provide mechanical stability. The carrier may be attached to the die 114 using any suitable technique, including, for example, a removable adhesive.

FIG. 4C illustrates an assembly 400C subsequent to providing an insulating material 430 around the die 114-2, the conductive pillars 434, and the shield structure 454 of the assembly 400B (FIG. 4B). In some embodiments, the insulating material 430 may be initially deposited on and over the tops of the die 114-2, the conductive pillars 434, and the shield structure 454, then, polished back to expose the conductive contacts 124 at the top surface of the die 114-2 and the top surfaces of the conductive pillars 434, and the shield structure 454. In some embodiments, the insulating material 430 is a mold material, such as an organic polymer with inorganic silica particles. In some embodiments, the insulating material 430 is a dielectric material. In some embodiments, the dielectric material may include an organic dielectric material, a fire retardant grade 4 material (FR-4), BT resin, polyimide materials, glass reinforced epoxy matrix materials, or low-k and ultra low-k dielectric (e.g., carbon-doped dielectrics, fluorine-doped dielectrics, porous dielectrics, and organic polymeric dielectrics). The dielectric material may be formed using any suitable process, including lamination, or slit coating and curing. If the dielectric layer is formed to completely cover the conductive pillars 434 and the die 114-2, the dielectric layer may be removed to expose the conductive contacts 124 at the top surface of the die 114-2 and the top surfaces of the conductive pillars 434 and the shield structure 454 using any suitable technique, including grinding, or etching, such as a wet etch, a dry etch (e.g., a plasma etch), a wet blast, or a laser ablation (e.g., using excimer laser). In some embodiments, the thickness of the insulating layer 430 may be minimized to reduce the etching time required.

FIG. 4D illustrates an assembly 400D subsequent to placing the dies 114-3, 114-5, 114-6, and providing an insulating material 433 around the dies. The dies 114-3, 114-5 may be coupled to the die 114-2 by DTD interconnects 130. The dies 114-3, 114-5 may be coupled to a package substrate, subsequent to removal from the carrier 402, by the conductive pillars 434 and may be coupled to the shield structure 454 by the ground connections 458. The die 114-6 may be coupled to the die 114-2 by DTD interconnects 130. Additional layers of the composite die may be built up by repeating the process as described with respect to FIGS. 4A-4D. The carrier 402 may be removed and, if multiple composite dies are manufactured together, the composite dies may be singulated. Further operations may be performed as suitable either before or after singulating (e.g., depositing a mold material, attaching a heat spreader, depositing a solder resist layer, attaching solder balls for coupling to a package substrate or to a circuit board, etc.). Although assembly 400D has conductive contacts 122 on the bottom surface of the die 114-2 for electrically coupling to a package substrate or a circuit board, in some embodiments, the dies 114-3, 114-5, and/or 114-6 may include conductive contacts on a top surface such that the assembly may be inverted or “flipped” and coupled to a package substrate or circuit board via interconnects on the top surface of the dies 114-3, 114-3, and/or 114-6.

In the embodiment of FIG. 1A, a multi-layer die subassembly 104 is illustrated as having two layers of dies. In some embodiments of the microelectronic assemblies 100 disclosed herein, the multi-layer die subassembly 104 may have more than two layers. For example, FIG. 5 illustrates an embodiment of a microelectronic assembly 100 in which a multi-layer die subassembly 104 has three layers 104-1, 104-2, 104-3. The first layer 104-1 may include the die 114-1, and the second layer 104-2 may include the die 114-2, as discussed above with reference to FIG. 1A. The third layer 104-3 may include the dies 114-3 and 114-6, as discussed above with reference to FIG. 1A, and may have the die 114-5 omitted. As shown for the die 114-1, the conductive contacts 122 on the bottom surface of the die 114-1 may be electrically and mechanically coupled to the conductive contacts 146 on the top surface of the package substrate 102 by DTPS interconnects 150. As shown for the die 114-2, the conductive contacts 122 on the bottom surface of the die 114-2 may be electrically and mechanically coupled to the conductive contacts 124 on the top surface of the die 114-1 by DTD interconnects 130, and may be electrically and mechanically coupled to the conductive contacts 146 on the top surface of the package substrate 102 by ML interconnects 152-3. As shown for the die 114-3, the conductive contacts 122 on the bottom surface of the die 114-3 may be electrically and mechanically coupled to the conductive contacts 124 on the top surface of the die 114-1 by ML interconnects 152-2, and may be electrically and mechanically coupled to the conductive contacts 146 on the top surface of the package substrate 102 by ML interconnects 152-1. The conductive contacts 122 on the bottom surface of the die 114-3 may be electrically and mechanically coupled to the conductive contacts 124 on the top surface of the die 114-2 by DTD interconnects 130. The ML interconnects 152-1, 152-3 that may be electrically and mechanically coupled to the package substrate 102 may be surrounded by a shield structure 154 and may be coupled to a ground connection 158 on the die 114-2, 114-3, or on the package substrate 102.

FIGS. 6A-6D are side, cross-sectional views of various stages in an example process for manufacturing the microelectronic assembly 100 of FIG. 5, in accordance with various embodiments.

FIG. 6A illustrates an assembly 600A including a carrier 602 subsequent to forming conductive pillars 634 and shield structure 654 on the top surface of the carrier 602. The conductive pillars 634 and shield structure 654 may be disposed to form one or more de-population regions 655 in which no conductive pillars are present. The conductive pillars 634 and shield structure 654 may take the form of any of the embodiments disclosed herein, and may be formed using any suitable technique, for example, as described above with reference to FIG. 4. The conductive pillars 434 and shield structure 454 may have any suitable dimensions and may span one or more layers, as shown in FIG. 5 and as described above with reference to FIG. 4.

FIG. 6B illustrates an assembly 600B subsequent to placing the die 114-1 in the de-population region 655 of the assembly 600A (FIG. 6A) and providing an insulating material 630 around the die 114-1, the conductive pillars 634, and the shield structure 654, as described above with reference to FIG. 4.

FIG. 6C illustrates an assembly 600C subsequent to forming conductive pillars 634-1 on the conductive contacts 124 at the top surface of the die 114-1 and conductive pillars 634-2 on the top surface of one or more conductive pillars 634 formed in the first layer, forming the shield structure 654 on the top surface of the shield structure formed in the first layer, placing the die 114-2, and providing an insulating material around the die 114-2, the conductive pillars 634, and the shield structure 654. The shield structure 654 may be coupled to a ground connection 658-1 on the bottom side of the die 114-2.

FIG. 6D illustrates an assembly 600D subsequent to placing the dies 114-3, 114-6, and providing an insulating material around the dies. The dies 114-3, 114-6 may be coupled to the die 114-2 by DTD interconnects. The die 114-3 may be coupled to the die 114-1 by conductive pillars 634-1 and, subsequent to removal from the carrier, may be coupled to a package substrate by conductive pillars 634-2. The shield structure 654 may be coupled to a ground connection 658-2 on the bottom side of the die 114-3. Additional layers of the composite die may be built up by repeating the process as described with respect to FIGS. 4 and 6.

FIG. 7A is a side, cross-sectional view of a microelectronic assembly 100, in accordance with various embodiments. The microelectronic assembly 100 may include a package substrate 102 coupled to a multi-layer die subassembly 104 having multiple interconnects. The multi-layer die subassembly 104 may include two layers. In particular, the multi-layer die subassembly 104 may include a first layer having a die 114-2, and a second layer having dies 114-3, 114-6. The die 114-3 in the second layer may be coupled to the package substrate by ML interconnects 152 that may continue into the package substrate 102. The ML interconnects 152 may be at least partially surrounded by a shield structure 154 that may continue into the package substrate 102. The shield structure 154 may be coupled to a ground connection 158 on the package substrate, which may reduce the signal coupling further into the package and may improve signal performance for high frequency signaling, and particularly for very high frequency signaling. High frequency signaling may be designated as having a frequency between 3 megahertz (MHz) and 30 MHz. Very high frequency signaling may be designated as having a frequency between 30 MHz and 300 MHz. The ML interconnects 152 and the shield structure 154 may be formed in the package substrate using any suitable technique, for example, any of the processes described above with reference to FIG. 4, among others.

For very high frequency signaling, hollow waveguides (e.g., rectangular or circular waveguides) may be preferred to transverse electromagnetic (TEM) or quasi TEM waveguides (e.g., microstrip lines and strip lines). A hollow waveguide may have a lower insertion loss as compared to a TEM or quasi TEM waveguide, and may have smaller a cross-section dimension as compared to a TEM or quasi TEM waveguide (e.g., a hollow waveguide may have half the operating wavelength in the medium as compared to a TEM or quasi TEM waveguide). For example, at 100 GHz and for a dielectric constant of 3, the hollow waveguide cross-section dimension may be about 1 millimeter, which may allow for a relatively ultra-high bandwidth interconnect with very low loss for external interconnects (e.g., rack to rack in datacenter environments). By using the shield structure as a hollow waveguide wall (e.g., rectangular or circular), the relatively high insertion loss in the transition between the die and the package may be reduced. By continuing the shield structure into the package (e.g., using any of the processes described above with reference to FIG. 4), the insertion loss from the die up to the off-package connector may be reduced further. FIG. 7B is a side, cross-sectional view of a microelectronic assembly 100, in accordance with various embodiments. The microelectronic assembly 100 may include a package substrate 102 coupled to a multi-layer die subassembly 104 having multiple interconnects. The multi-layer die subassembly 104 may be attached to the package substrate 102 by a coupling underfill (CUF) 129 or other suitable material, such as glue or adhesive. The multi-layer die subassembly 104 may include two layers. In particular, the multi-layer die subassembly 104 may include a first layer having a die 114-2, and a second layer having dies 114-3, 114-6. The die 114-3 in the second layer may be coupled to the package substrate by ML interconnects 152. As shown in FIG. 7B, the ML interconnects 152A and 1526 may form a hollow waveguide that continues into the package substrate 102. The interconnect 160 may be a waveguide launcher (e.g., a probe, a patch, or a transformer launcher) and may be at least partially surrounded by a shield structure 154 that forms the waveguide walls. The shield structure 154 forming the waveguide walls may be coupled to a ground connection 158 on the package substrate. The shield structure 154 may continue through the package substrate 102 to form waveguide walls 155 in the package substrate 102 to connect to a waveguide connector 780.

Although the microelectronic assemblies 100 disclosed herein show a particular number and arrangement of dies, interconnects, and shield structures, any number and arrangement of dies, interconnects, and shield structures may be used, and may further include one or more redistribution layers (RDLs) and package substrate portions.

The microelectronic assemblies 100 disclosed herein may be used for any suitable application. For example, in some embodiments, a microelectronic assembly 100 may be used to provide an ultra-high density and high bandwidth interconnect for field programmable gate array (FPGA) transceivers and III-V amplifiers. More generally, the microelectronic assemblies 100 disclosed herein may allow “blocks” of different kinds of functional circuits to be distributed into different ones of the dies 114, instead of having all of the circuits included in a single large die, per some conventional approaches. In some such conventional approaches, a single large die would include all of these different circuits to achieve high bandwidth, low loss communication between the circuits, and some or all of these circuits may be selectively disabled to adjust the capabilities of the large die. However, because the ML interconnects 152, and/or the DTD interconnects 130 of the microelectronic assemblies 100 may allow high bandwidth, low loss communication between different ones of the dies 114 and different ones of the dies 114 and the package substrate 102, different circuits may be distributed into different dies 114, reducing the total cost of manufacture, improving yield, and increasing design flexibility by allowing different dies 114 (e.g., dies 114 formed using different fabrication technologies) to be readily swapped to achieve different functionality.

In another example, a die 114-2 that includes active circuitry in a microelectronic assembly 100 may be used to provide an “active” bridge between other dies 114 (e.g., between the dies 114-1 and 114-3, or between the dies 114-1 and 114-6, in various embodiments). In another example, the die 114-1 in a microelectronic assembly 100 may be a processing device (e.g., a central processing unit, a graphics processing unit, an FPGA, a modem, an applications processor, etc.), and the die 114-2 may include high bandwidth memory, transceiver circuitry, and/or input/output circuitry (e.g., Double Data Rate transfer circuitry, Peripheral Component Interconnect Express circuitry, etc.). In some embodiments, the die 114-1 may include a set of conductive contacts 124 to interface with a high bandwidth memory die 114-2, a different set of conductive contacts 124 to interface with an input/output circuitry die 114-2, etc. The particular high bandwidth memory die 114-2, input/output circuitry die 114-2, etc. may be selected for the application at hand.

In another example, the die 114-2 in a microelectronic assembly 100 may be a cache memory (e.g., a third level cache memory), and one or more dies 114-1, 114-3, and/or 114-6 may be processing devices (e.g., a central processing unit, a graphics processing unit, an FPGA, a modem, an applications processor, etc.) that share the cache memory of the die 114-2.

In another example, a die 114 may be a single silicon substrate or may be a composite die, such as a memory stack.

The microelectronic assemblies 100 disclosed herein may be included in any suitable electronic component. FIGS. 8-11 illustrate various examples of apparatuses that may include, or be included in, any of the microelectronic assemblies 100 disclosed herein.

FIG. 8 is a top view of a wafer 1500 and dies 1502 that may be included in any of the microelectronic assemblies 100 disclosed herein (e.g., as any suitable ones of the dies 114). The wafer 1500 may be composed of semiconductor material and may include one or more dies 1502 having IC structures formed on a surface of the wafer 1500. Each of the dies 1502 may be a repeating unit of a semiconductor product that includes any suitable IC. After the fabrication of the semiconductor product is complete, the wafer 1500 may undergo a singulation process in which the dies 1502 are separated from one another to provide discrete “chips” of the semiconductor product. The die 1502 may be any of the dies 114 disclosed herein. The die 1502 may include one or more transistors (e.g., some of the transistors 1640 of FIG. 9, discussed below), supporting circuitry to route electrical signals to the transistors, passive components (e.g., signal traces, resistors, capacitors, or inductors), and/or any other IC components. In some embodiments, the wafer 1500 or the die 1502 may include a memory device (e.g., a RAM device, such as a static RAM (SRAM) device, a magnetic RAM (M RAM) device, a resistive RAM (RRAM) device, a conductive-bridging RAM (CBRAM) device, etc.), a logic device (e.g., an AND, OR, NAND, or NOR gate), or any other suitable circuit element. Multiple ones of these devices may be combined on a single die 1502. For example, a memory array formed by multiple memory devices may be formed on a same die 1502 as a processing device (e.g., the processing device 1802 of FIG. 11) or other logic that is configured to store information in the memory devices or execute instructions stored in the memory array. Various ones of the microelectronic assemblies 100 disclosed herein may be manufactured using a die-to-wafer assembly technique in which some dies 114 are attached to a wafer 1500 that include others of the dies 114, and the wafer 1500 is subsequently singulated.

FIG. 9 is a cross-sectional side view of an IC device 1600 that may be included in any of the microelectronic assemblies 100 disclosed herein (e.g., in any of the dies 114). One or more of the IC devices 1600 may be included in one or more dies 1502 (FIG. 8). The IC device 1600 may be formed on a die substrate 1602 (e.g., the wafer 1500 of FIG. 8) and may be included in a die (e.g., the die 1502 of FIG. 8). The die substrate 1602 may be a semiconductor substrate composed of semiconductor material systems including, for example, n-type or p-type materials systems (or a combination of both). The die substrate 1602 may include, for example, a crystalline substrate formed using a bulk silicon or a silicon-on-insulator (SOI) substructure. In some embodiments, the die substrate 1602 may be formed using alternative materials, which may or may not be combined with silicon, that include, but are not limited to, germanium, indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide, or gallium antimonide. Further materials classified as group II-VI, III-V, or IV may also be used to form the die substrate 1602. Although a few examples of materials from which the die substrate 1602 may be formed are described here, any material that may serve as a foundation for an IC device 1600 may be used. The die substrate 1602 may be part of a singulated die (e.g., the dies 1502 of FIG. 8) or a wafer (e.g., the wafer 1500 of FIG. 8).

The IC device 1600 may include one or more device layers 1604 disposed on the die substrate 1602. The device layer 1604 may include features of one or more transistors 1640 (e.g., metal oxide semiconductor field-effect transistors (MOSFETs)) formed on the die substrate 1602. The device layer 1604 may include, for example, one or more source and/or drain (S/D) regions 1620, a gate 1622 to control current flow in the transistors 1640 between the S/D regions 1620, and one or more S/D contacts 1624 to route electrical signals to/from the S/D regions 1620. The transistors 1640 may include additional features not depicted for the sake of clarity, such as device isolation regions, gate contacts, and the like. The transistors 1640 are not limited to the type and configuration depicted in FIG. 9 and may include a wide variety of other types and configurations such as, for example, planar transistors, non-planar transistors, or a combination of both. Non-planar transistors may include FinFET transistors, such as double-gate transistors or tri-gate transistors, and wrap-around or all-around gate transistors, such as nanoribbon and nanowire transistors.

Each transistor 1640 may include a gate 1622 formed of at least two layers, a gate dielectric and a gate electrode. The gate dielectric may include one layer or a stack of layers. The one or more layers may include silicon oxide, silicon dioxide, silicon carbide, and/or a high-k dielectric material. The high-k dielectric material may include elements such as hafnium, silicon, oxygen, titanium, tantalum, lanthanum, aluminum, zirconium, barium, strontium, yttrium, lead, scandium, niobium, and zinc. Examples of high-k materials that may be used in the gate dielectric include, but are not limited to, hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate. In some embodiments, an annealing process may be carried out on the gate dielectric to improve its quality when a high-k material is used.

The gate electrode may be formed on the gate dielectric and may include at least one p-type work function metal or n-type work function metal, depending on whether the transistor 1640 is to be a p-type metal oxide semiconductor (PMOS) or an n-type metal oxide semiconductor (NMOS) transistor. In some implementations, the gate electrode may consist of a stack of two or more metal layers, where one or more metal layers are work function metal layers and at least one metal layer is a fill metal layer. Further metal layers may be included for other purposes, such as a barrier layer. For a PMOS transistor, metals that may be used for the gate electrode include, but are not limited to, ruthenium, palladium, platinum, cobalt, nickel, conductive metal oxides (e.g., ruthenium oxide), and any of the metals discussed below with reference to an NMOS transistor (e.g., for work function tuning). For an NMOS transistor, metals that may be used for the gate electrode include, but are not limited to, hafnium, zirconium, titanium, tantalum, aluminum, alloys of these metals, carbides of these metals (e.g., hafnium carbide, zirconium carbide, titanium carbide, tantalum carbide, and aluminum carbide), and any of the metals discussed above with reference to a PMOS transistor (e.g., for work function tuning).

In some embodiments, when viewed as a cross-section of the transistor 1640 along the source-channel-drain direction, the gate electrode may consist of a U-shaped structure that includes a bottom portion substantially parallel to the surface of the die substrate 1602 and two sidewall portions that are substantially perpendicular to the top surface of the die substrate 1602. In other embodiments, at least one of the metal layers that form the gate electrode may simply be a planar layer that is substantially parallel to the top surface of the die substrate 1602 and does not include sidewall portions substantially perpendicular to the top surface of the die substrate 1602. In other embodiments, the gate electrode may consist of a combination of U-shaped structures and planar, non-U-shaped structures. For example, the gate electrode may consist of one or more U-shaped metal layers formed atop one or more planar, non-U-shaped layers.

In some embodiments, a pair of sidewall spacers may be formed on opposing sides of the gate stack to bracket the gate stack. The sidewall spacers may be formed from materials such as silicon nitride, silicon oxide, silicon carbide, silicon nitride doped with carbon, and silicon oxynitride. Processes for forming sidewall spacers are well known in the art and generally include deposition and etching process steps. In some embodiments, a plurality of spacer pairs may be used; for instance, two pairs, three pairs, or four pairs of sidewall spacers may be formed on opposing sides of the gate stack.

The S/D regions 1620 may be formed within the die substrate 1602 adjacent to the gate 1622 of each transistor 1640. The S/D regions 1620 may be formed using an implantation/diffusion process or an etching/deposition process, for example. In the former process, dopants such as boron, aluminum, antimony, phosphorous, or arsenic may be ion-implanted into the die substrate 1602 to form the S/D regions 1620. An annealing process that activates the dopants and causes them to diffuse farther into the die substrate 1602 may follow the ion-implantation process. In the latter process, the die substrate 1602 may first be etched to form recesses at the locations of the S/D regions 1620. An epitaxial deposition process may then be carried out to fill the recesses with material that is used to fabricate the S/D regions 1620. In some implementations, the S/D regions 1620 may be fabricated using a silicon alloy such as silicon germanium or silicon carbide. In some embodiments, the epitaxially deposited silicon alloy may be doped in situ with dopants such as boron, arsenic, or phosphorous. In some embodiments, the S/D regions 1620 may be formed using one or more alternate semiconductor materials such as germanium or a group III-V material or alloy. In further embodiments, one or more layers of metal and/or metal alloys may be used to form the S/D regions 1620.

Electrical signals, such as power and/or input/output (I/O) signals, may be routed to and/or from the devices (e.g., transistors 1640) of the device layer 1604 through one or more interconnect layers disposed on the device layer 1604 (illustrated in FIG. 9 as interconnect layers 1606-1610). For example, electrically conductive features of the device layer 1604 (e.g., the gate 1622 and the S/D contacts 1624) may be electrically coupled with the interconnect structures 1628 of the interconnect layers 1606-1610. The one or more interconnect layers 1606-1610 may form a metallization stack (also referred to as an “ILD stack”) 1619 of the IC device 1600.

The interconnect structures 1628 may be arranged within the interconnect layers 1606-1610 to route electrical signals according to a wide variety of designs; in particular, the arrangement is not limited to the particular configuration of interconnect structures 1628 depicted in FIG. 9. Although a particular number of interconnect layers 1606-1610 is depicted in FIG. 9, embodiments of the present disclosure include IC devices having more or fewer interconnect layers than depicted.

In some embodiments, the interconnect structures 1628 may include lines 1628a and/or vias 1628b filled with an electrically conductive material such as a metal. The lines 1628a may be arranged to route electrical signals in a direction of a plane that is substantially parallel with a surface of the die substrate 1602 upon which the device layer 1604 is formed. For example, the lines 1628a may route electrical signals in a direction in and out of the page from the perspective of FIG. 9. The vias 1628b may be arranged to route electrical signals in a direction of a plane that is substantially perpendicular to the surface of the die substrate 1602 upon which the device layer 1604 is formed. In some embodiments, the vias 1628b may electrically couple lines 1628a of different interconnect layers 1606-1610 together.

The interconnect layers 1606-1610 may include a dielectric material 1626 disposed between the interconnect structures 1628, as shown in FIG. 9. In some embodiments, the dielectric material 1626 disposed between the interconnect structures 1628 in different ones of the interconnect layers 1606-1610 may have different compositions; in other embodiments, the composition of the dielectric material 1626 between different interconnect layers 1606-1610 may be the same.

A first interconnect layer 1606 (referred to as Metal 1 or “M1”) may be formed directly on the device layer 1604. In some embodiments, the first interconnect layer 1606 may include lines 1628a and/or vias 1628b, as shown. The lines 1628a of the first interconnect layer 1606 may be coupled with contacts (e.g., the S/D contacts 1624) of the device layer 1604.

A second interconnect layer 1608 (referred to as Metal 2 or “M2”) may be formed directly on the first interconnect layer 1606. In some embodiments, the second interconnect layer 1608 may include vias 1628b to couple the lines 1628a of the second interconnect layer 1608 with the lines 1628a of the first interconnect layer 1606. Although the lines 1628a and the vias 1628b are structurally delineated with a line within each interconnect layer (e.g., within the second interconnect layer 1608) for the sake of clarity, the lines 1628a and the vias 1628b may be structurally and/or materially contiguous (e.g., simultaneously filled during a dual damascene process) in some embodiments.

A third interconnect layer 1610 (referred to as Metal 3 or “M3”) (and additional interconnect layers, as desired) may be formed in succession on the second interconnect layer 1608 according to similar techniques and configurations described in connection with the second interconnect layer 1608 or the first interconnect layer 1606. In some embodiments, the interconnect layers that are “higher up” in the metallization stack 1619 in the IC device 1600 (i.e., farther away from the device layer 1604) may be thicker.

The IC device 1600 may include a solder resist material 1634 (e.g., polyimide or similar material) and one or more conductive contacts 1636 formed on the interconnect layers 1606-1610. In FIG. 9, the conductive contacts 1636 are illustrated as taking the form of bond pads. The conductive contacts 1636 may be electrically coupled with the interconnect structures 1628 and configured to route the electrical signals of the transistor(s) 1640 to other external devices. For example, solder bonds may be formed on the one or more conductive contacts 1636 to mechanically and/or electrically couple a chip including the IC device 1600 with another component (e.g., a circuit board). The IC device 1600 may include additional or alternate structures to route the electrical signals from the interconnect layers 1606-1610; for example, the conductive contacts 1636 may include other analogous features (e.g., posts) that route the electrical signals to external components. The conductive contacts 1636 may serve as the conductive contacts 122 or 124, as appropriate.

In some embodiments in which the IC device 1600 is a double-sided die (e.g., like the die 114-1), the IC device 1600 may include another metallization stack (not shown) on the opposite side of the device layer(s) 1604. This metallization stack may include multiple interconnect layers as discussed above with reference to the interconnect layers 1606-1610, to provide conductive pathways (e.g., including conductive lines and vias) between the device layer(s) 1604 and additional conductive contacts (not shown) on the opposite side of the IC device 1600 from the conductive contacts 1636. These additional conductive contacts may serve as the conductive contacts 122 or 124, as appropriate.

In other embodiments in which the IC device 1600 is a double-sided die (e.g., like the die 114-1), the IC device 1600 may include one or more TSVs through the die substrate 1602; these TSVs may make contact with the device layer(s) 1604, and may provide conductive pathways between the device layer(s) 1604 and additional conductive contacts (not shown) on the opposite side of the IC device 1600 from the conductive contacts 1636. These additional conductive contacts may serve as the conductive contacts 122 or 124, as appropriate.

FIG. 10 is a cross-sectional side view of an IC device assembly 1700 that may include any of the microelectronic assemblies 100 disclosed herein. In some embodiments, the IC device assembly 1700 may be a microelectronic assembly 100. The IC device assembly 1700 includes a number of components disposed on a circuit board 1702 (which may be, e.g., a motherboard). The IC device assembly 1700 includes components disposed on a first face 1740 of the circuit board 1702 and an opposing second face 1742 of the circuit board 1702; generally, components may be disposed on one or both faces 1740 and 1742. Any of the IC packages discussed below with reference to the IC device assembly 1700 may take the form of any suitable ones of the embodiments of the microelectronic assemblies 100 disclosed herein.

In some embodiments, the circuit board 1702 may be a PCB including multiple metal layers separated from one another by layers of dielectric material and interconnected by electrically conductive vias. Any one or more of the metal layers may be formed in a desired circuit pattern to route electrical signals (optionally in conjunction with other metal layers) between the components coupled to the circuit board 1702. In other embodiments, the circuit board 1702 may be a non-PCB substrate. In some embodiments the circuit board 1702 may be, for example, a circuit board.

The IC device assembly 1700 illustrated in FIG. 10 includes a package-on-interposer structure 1736 coupled to the first face 1740 of the circuit board 1702 by coupling components 1716. The coupling components 1716 may electrically and mechanically couple the package-on-interposer structure 1736 to the circuit board 1702, and may include solder balls (as shown in FIG. 10), male and female portions of a socket, an adhesive, an underfill material, and/or any other suitable electrical and/or mechanical coupling structure.

The package-on-interposer structure 1736 may include an IC package 1720 coupled to an interposer 1704 by coupling components 1718. The coupling components 1718 may take any suitable form for the application, such as the forms discussed above with reference to the coupling components 1716. Although a single IC package 1720 is shown in FIG. 10, multiple IC packages may be coupled to the interposer 1704; indeed, additional interposers may be coupled to the interposer 1704. The interposer 1704 may provide an intervening substrate used to bridge the circuit board 1702 and the IC package 1720. The IC package 1720 may be or include, for example, a die (the die 1502 of FIG. 8), an IC device (e.g., the IC device 1600 of FIG. 9), or any other suitable component. Generally, the interposer 1704 may spread a connection to a wider pitch or reroute a connection to a different connection. For example, the interposer 1704 may couple the IC package 1720 (e.g., a die) to a set of ball grid array (BGA) conductive contacts of the coupling components 1716 for coupling to the circuit board 1702. In the embodiment illustrated in FIG. 10, the IC package 1720 and the circuit board 1702 are attached to opposing sides of the interposer 1704; in other embodiments, the IC package 1720 and the circuit board 1702 may be attached to a same side of the interposer 1704. In some embodiments, three or more components may be interconnected by way of the interposer 1704.

In some embodiments, the interposer 1704 may be formed as a PCB, including multiple metal layers separated from one another by layers of dielectric material and interconnected by electrically conductive vias. In some embodiments, the interposer 1704 may be formed of an epoxy resin, a fiberglass-reinforced epoxy resin, an epoxy resin with inorganic fillers, a ceramic material, or a polymer material such as polyimide. In some embodiments, the interposer 1704 may be formed of alternate rigid or flexible materials that may include the same materials described above for use in a semiconductor substrate, such as silicon, germanium, and other group III-V and group IV materials. The interposer 1704 may include metal interconnects 1708 and vias 1710, including but not limited to TSVs 1706. The interposer 1704 may further include embedded devices 1714, including both passive and active devices. Such devices may include, but are not limited to, capacitors, decoupling capacitors, resistors, inductors, fuses, diodes, transformers, sensors, electrostatic discharge (ESD) devices, and memory devices. More complex devices such as radio frequency devices, power amplifiers, power management devices, antennas, arrays, sensors, and microelectromechanical systems (MEMS) devices may also be formed on the interposer 1704. The package-on-interposer structure 1736 may take the form of any of the package-on-interposer structures known in the art.

The IC device assembly 1700 may include an IC package 1724 coupled to the first face 1740 of the circuit board 1702 by coupling components 1722. The coupling components 1722 may take the form of any of the embodiments discussed above with reference to the coupling components 1716, and the IC package 1724 may take the form of any of the embodiments discussed above with reference to the IC package 1720.

The IC device assembly 1700 illustrated in FIG. 10 includes a package-on-package structure 1734 coupled to the second face 1742 of the circuit board 1702 by coupling components 1728. The package-on-package structure 1734 may include an IC package 1726 and an IC package 1732 coupled together by coupling components 1730 such that the IC package 1726 is disposed between the circuit board 1702 and the IC package 1732. The coupling components 1728 and 1730 may take the form of any of the embodiments of the coupling components 1716 discussed above, and the IC packages 1726 and 1732 may take the form of any of the embodiments of the IC package 1720 discussed above. The package-on-package structure 1734 may be configured in accordance with any of the package-on-package structures known in the art.

FIG. 11 is a block diagram of an example electrical device 1800 that may include one or more of the microelectronic assemblies 100 disclosed herein. For example, any suitable ones of the components of the electrical device 1800 may include one or more of the IC device assemblies 1700, IC devices 1600, or dies 1502 disclosed herein, and may be arranged in any of the microelectronic assemblies 100 disclosed herein. A number of components are illustrated in FIG. 11 as included in the electrical device 1800, but any one or more of these components may be omitted or duplicated, as suitable for the application. In some embodiments, some or all of the components included in the electrical device 1800 may be attached to one or more motherboards. In some embodiments, some or all of these components are fabricated onto a single system-on-a-chip (SoC) die.

Additionally, in various embodiments, the electrical device 1800 may not include one or more of the components illustrated in FIG. 11, but the electrical device 1800 may include interface circuitry for coupling to the one or more components. For example, the electrical device 1800 may not include a display device 1806, but may include display device interface circuitry (e.g., a connector and driver circuitry) to which a display device 1806 may be coupled. In another set of examples, the electrical device 1800 may not include an audio input device 1824 or an audio output device 1808, but may include audio input or output device interface circuitry (e.g., connectors and supporting circuitry) to which an audio input device 1824 or audio output device 1808 may be coupled.

The electrical device 1800 may include a processing device 1802 (e.g., one or more processing devices). As used herein, the term “processing device” or “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory. The processing device 1802 may include one or more digital signal processors (DSPs), application-specific ICs (ASICs), central processing units (CPUs), graphics processing units (GPUs), cryptoprocessors (specialized processors that execute cryptographic algorithms within hardware), server processors, or any other suitable processing devices. The electrical device 1800 may include a memory 1804, which may itself include one or more memory devices such as volatile memory (e.g., dynamic RAM (DRAM)), nonvolatile memory (e.g., read-only memory (ROM)), flash memory, solid state memory, and/or a hard drive. In some embodiments, the memory 1804 may include memory that shares a die with the processing device 1802. This memory may be used as cache memory and may include embedded dynamic RAM (eDRAM) or spin transfer torque magnetic RAM (STT-M RAM).

In some embodiments, the electrical device 1800 may include a communication chip 1812 (e.g., one or more communication chips). For example, the communication chip 1812 may be configured for managing wireless communications for the transfer of data to and from the electrical device 1800. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a nonsolid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not.

The communication chip 1812 may implement any of a number of wireless standards or protocols, including but not limited to Institute for Electrical and Electronic Engineers (IEEE) standards including Wi-Fi (IEEE 802.11 family), IEEE 802.16 standards (e.g., IEEE 802.16-2005 Amendment), Long-Term Evolution (LTE) project along with any amendments, updates, and/or revisions (e.g., advanced LTE project, ultra mobile broadband (UMB) project (also referred to as “3GPP2”), etc.). IEEE 802.16 compatible Broadband Wireless Access (BWA) networks are generally referred to as WiMAX networks, an acronym that stands for Worldwide Interoperability for Microwave Access, which is a certification mark for products that pass conformity and interoperability tests for the IEEE 802.16 standards. The communication chip 1812 may operate in accordance with a Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMLS), High Speed Packet Access (HSPA), Evolved HSPA (E-HSPA), or LTE network. The communication chip 1812 may operate in accordance with Enhanced Data for GSM Evolution (EDGE), GSM EDGE Radio Access Network (GERAN), Universal Terrestrial Radio Access Network (UTRAN), or Evolved UTRAN (E-UTRAN). The communication chip 1812 may operate in accordance with Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Digital Enhanced Cordless Telecommunications (DECT), Evolution-Data Optimized (EV-DO), and derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The communication chip 1812 may operate in accordance with other wireless protocols in other embodiments. The electrical device 1800 may include an antenna 1822 to facilitate wireless communications and/or to receive other wireless communications (such as AM or FM radio transmissions).

In some embodiments, the communication chip 1812 may manage wired communications, such as electrical, optical, or any other suitable communication protocols (e.g., the Ethernet). As noted above, the communication chip 1812 may include multiple communication chips. For instance, a first communication chip 1812 may be dedicated to shorter-range wireless communications such as Wi-Fi or Bluetooth, and a second communication chip 1812 may be dedicated to longer-range wireless communications such as global positioning system (GPS), EDGE, GPRS, CDMA, WiMAX, LTE, EV-DO, or others. In some embodiments, a first communication chip 1812 may be dedicated to wireless communications, and a second communication chip 1812 may be dedicated to wired communications.

The electrical device 1800 may include battery/power circuitry 1814. The battery/power circuitry 1814 may include one or more energy storage devices (e.g., batteries or capacitors) and/or circuitry for coupling components of the electrical device 1800 to an energy source separate from the electrical device 1800 (e.g., AC line power).

The electrical device 1800 may include a display device 1806 (or corresponding interface circuitry, as discussed above). The display device 1806 may include any visual indicators, such as a heads-up display, a computer monitor, a projector, a touchscreen display, a liquid crystal display (LCD), a light-emitting diode display, or a flat panel display.

The electrical device 1800 may include an audio output device 1808 (or corresponding interface circuitry, as discussed above). The audio output device 1808 may include any device that generates an audible indicator, such as speakers, headsets, or earbuds.

The electrical device 1800 may include an audio input device 1824 (or corresponding interface circuitry, as discussed above). The audio input device 1824 may include any device that generates a signal representative of a sound, such as microphones, microphone arrays, or digital instruments (e.g., instruments having a musical instrument digital interface (MIDI) output).

The electrical device 1800 may include a GPS device 1818 (or corresponding interface circuitry, as discussed above). The GPS device 1818 may be in communication with a satellite-based system and may receive a location of the electrical device 1800, as known in the art.

The electrical device 1800 may include an other output device 1810 (or corresponding interface circuitry, as discussed above). Examples of the other output device 1810 may include an audio codec, a video codec, a printer, a wired or wireless transmitter for providing information to other devices, or an additional storage device.

The electrical device 1800 may include an other input device 1820 (or corresponding interface circuitry, as discussed above). Examples of the other input device 1820 may include an accelerometer, a gyroscope, a compass, an image capture device, a keyboard, a cursor control device such as a mouse, a stylus, a touchpad, a bar code reader, a Quick Response (QR) code reader, any sensor, or a radio frequency identification (RFID) reader.

The electrical device 1800 may have any desired form factor, such as a computing device or a hand-held, portable or mobile electrical device (e.g., a cell phone, a smart phone, a mobile internet device, a music player, a tablet computer, a laptop computer, a netbook computer, an ultrabook computer, a personal digital assistant (PDA), an ultra mobile personal computer, etc.), a desktop electrical device, a server, or other networked computing component, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a vehicle control unit, a digital camera, a digital video recorder, or a wearable electrical device. In some embodiments, the electrical device 1800 may be any other electronic device that processes data.

The following paragraphs provide various examples of the embodiments disclosed herein.

Example 1 is a microelectronic assembly, including a package substrate having a first surface and an opposing second surface; a first die having a first surface and an opposing second surface, wherein the first die is embedded in a first dielectric layer, wherein the first surface of the first die is coupled to the second surface of the package substrate, and wherein the first dielectric layer is between a second dielectric layer and the second surface of the package substrate; a second die having a first surface and an opposing second surface, wherein the second die is embedded in the second dielectric layer, wherein the first surface of the second die is coupled to the second surface of the package substrate by a conductive pillar; and a shield structure, wherein the shield structure at least partially surrounds the conductive pillar.

Example 2 may include the subject matter of Example 1, and may further specify that the shield structure is coupled to a ground connection on the package substrate.

Example 3 may include the subject matter of Example 1, and may further specify that the shield structure is coupled to a ground connection on the second die.

Example 4 may include the subject matter of Example 1, and may further include a redistribution layer at the first surface of the second die, wherein the shield structure is coupled to a ground connection on the redistribution layer.

Example 5 may include the subject matter of Example 1, and may further include a redistribution layer at the second surface of the package substrate, wherein the shield structure is coupled to a ground connection on the redistribution layer.

Example 6 may include the subject matter of Example 1, and may further specify that the conductive pillar is coupled to a ground connection on the package substrate and the shield structure is in contact with the conductive pillar along a height of the conductive pillar.

Example 7 may include the subject matter of Example 1, and may further specify that the shield structure has a width between 20 microns and 200 microns.

Example 8 may include the subject matter of Example 1, and may further specify that the shield structure has a height between 50 microns and 1000 microns.

Example 9 may include the subject matter of Example 1, and may further specify that the conductive pillar is a first conductive pillar forming a positive terminal of a differential signaling interconnect, and the microelectronic assembly further includes a second conductive pillar forming a negative terminal of the differential signaling interconnect, and wherein the shield structure surrounds the first and second conductive pillars.

Example 10 may include the subject matter of Example 1, and may further specify that the shield structure has a cross-section that forms a hexagon around the conductive pillar.

Example 11 may include the subject matter of Example 1, and may further specify that the shield structure surrounds the conductive pillar.

Example 12 may include the subject matter of Example 1, and may further specify that the conductive pillar is one of a plurality of conductive pillars, and wherein a pitch of the conductive pillars is between 10 microns and 500 microns.

Example 13 may include the subject matter of Example 1, and may further specify that the shield structure forms a hollow waveguide to transmit a signal having a frequency between 3 MHz and 30 MHz from the second die to the package substrate.

Example 14 may include the subject matter of Example 13, and may further specify that the hollow waveguide has a cross-section that is rectangular.

Example 15 may include the subject matter of Example 13, and may further specify that the hollow waveguide has a cross-section that is circular.

Example 16 may include the subject matter of Example 13, and may further specify that the hollow waveguide has a cross-section that is hexagonal.

Example 17 is a computing device, including a microelectronic assembly, the microelectronic assembly including a package substrate having a first surface and an opposing second surface; a first die having a first surface and an opposing second surface, wherein the first surface of the first die is coupled to the second surface of the package substrate; a second die having a first surface and an opposing second surface, wherein the first surface of the second die at least partially overlaps the second surface of the first die, and wherein the first surface of the second die is coupled to the second surface of the package substrate by a conductive pillar; and a shield structure, wherein the shield structure at least partially surrounds the conductive pillar.

Example 18 may include the subject matter of Example 17, and may further specify that the shield structure is coupled to a ground connection on the package substrate.

Example 19 may include the subject matter of Example 17, and may further specify that the shield structure is coupled to a ground connection on the second die.

Example 20 may include the subject matter of Example 17, and may further specify that the shield structure includes copper.

Example 21 may include the subject matter of Example 17, and may further specify that the shield structure surrounds the conductive pillar.

Example 22 may include the subject matter of Example 17, and may further specify that the shield structure has a cross-section that forms a rectangle around the conductive pillar.

Example 23 may include the subject matter of Example 17, and may further include a redistribution layer at the first surface of the second die having a ground connection, wherein the shield structure is coupled to the ground connection on the redistribution layer.

Example 24 is a microelectronic assembly, including a package substrate having a first surface and an opposing second surface; a first die having a first surface and an opposing second surface, wherein the first die is embedded in a first dielectric layer, wherein the first dielectric layer is between a second dielectric layer and the second surface of the package substrate, and wherein the first surface of the first die is coupled to the second surface of the package substrate; a second die having a first surface and an opposing second surface, wherein the second die is embedded in the second dielectric layer, and wherein the second dielectric layer is between the first dielectric layer and a third dielectric layer; a third die having a first surface and an opposing second surface, wherein the third die is embedded in the third dielectric layer, wherein the first surface of the third die is coupled to the second surface of the package substrate by a first conductive pillar, and wherein the first surface of the third die is coupled to the second surface of the second die by a second conductive pillar; and a shield structure, wherein the shield structure surrounds the first conductive pillar.

Example 25 may include the subject matter of Example 24, and may further specify that the shield structure is coupled to a ground connection on the package substrate.

Example 26 may include the subject matter of Example 24, and may further specify that the shield structure is coupled to a ground connection on the third die.

Example 27 may include the subject matter of Example 24, and may further specify that the first conductive pillar is one of a plurality of first conductive pillars, wherein the second conductive pillar is one of a plurality of second conductive pillars, and wherein a pitch of the first conductive pillars is different from a pitch of the second conductive pillars.

Example 28 may include the subject matter of Example 24, and may further include a redistribution layer at the first surface of the third die having a ground connection, wherein the shield structure is coupled to the ground connection on the redistribution layer.

Example 29 is a method of manufacturing a microelectronic assembly, including forming first interconnects between a first die and a second die, wherein the first die has a first surface with first conductive contacts and an opposing second surface with second conductive contacts, wherein the second die has a first surface with first conductive contacts and an opposing second surface with second conductive contacts, wherein the first surface of the second die is above the second surface of the first die, wherein the second die partially overlaps the first die, and wherein the first interconnects couple the second conductive contacts of the first die to the first conductive contacts of the second die; and forming second interconnects between the second die and a package substrate, wherein the package substrate has a surface with conductive contacts, wherein the second interconnects couple the first conductive contacts of the second die to the conductive contacts of the package substrate, and wherein the second interconnects include a shield structure.

Example 30 may include the subject matter of Example 29, and may further specify that the second interconnects include a conductive pillar.

Example 31 may include the subject matter of Example 29, and may further specify that the shield structure is formed by depositing and patterning a photoresist material to form one or more openings, depositing conductive material in the one or more openings, and removing the photoresist material.

Example 32 may include the subject matter of Example 29, and may further include forming a third interconnect between the shield structure and a ground connection on the package substrate.

Claims

1. A microelectronic assembly, comprising:

a package substrate having a first surface and an opposing second surface;
a first die having a first surface and an opposing second surface, wherein the first die is embedded in a first dielectric layer, wherein the first surface of the first die is coupled to the second surface of the package substrate, and wherein the first dielectric layer is between a second dielectric layer and the second surface of the package substrate;
a second die having a first surface and an opposing second surface, wherein the second die is embedded in the second dielectric layer, wherein the first surface of the second die is coupled to the second surface of the package substrate by a conductive pillar; and
a conductive, radio frequency shield structure, wherein the shield structure surrounds the conductive pillar.

2. The microelectronic assembly of claim 1, wherein the shield structure is coupled to a ground connection on the package substrate.

3. The microelectronic assembly of claim 1, wherein the shield structure is coupled to a ground connection on the second die.

4. The microelectronic assembly of claim 1, further comprising:

a redistribution layer at the second surface of the package substrate, wherein the shield structure is coupled to a ground connection on the redistribution layer.

5. The microelectronic assembly of claim 1, wherein the conductive pillar is coupled to a ground connection on the package substrate and the shield structure is in contact with the conductive pillar along a height of the conductive pillar.

6. The microelectronic assembly of claim 1, wherein the conductive pillar is a first conductive pillar forming a positive terminal of a differential signaling interconnect, and the microelectronic assembly further includes a second conductive pillar forming a negative terminal of the differential signaling interconnect, and wherein the shield structure surrounds the first and second conductive pillars.

7. The microelectronic assembly of claim 1, wherein the shield structure has a cross-section that forms a hexagon around the conductive pillar.

8. The microelectronic assembly of claim 1, wherein the shield structure forms a hollow waveguide to transmit a signal having a frequency between 3 MHz and 30 MHz from the second die to the package substrate.

9. The microelectronic assembly of claim 8, wherein the hollow waveguide has a cross-section that is rectangular.

10. The microelectronic assembly of claim 8, wherein the hollow waveguide has a cross-section that is circular.

11. The microelectronic assembly of claim 8, wherein the hollow waveguide has a cross-section that is hexagonal.

12. A computing device, comprising:

a microelectronic assembly, comprising: a package substrate having a first surface and an opposing second surface; a first die having a first surface and an opposing second surface, wherein the first surface of the first die is coupled to the second surface of the package substrate; a second die having a first surface and an opposing second surface, wherein the first surface of the second die at least partially overlaps the second surface of the first die, and wherein the first surface of the second die is coupled to the second surface of the package substrate by a conductive pillar; and a conductive, radio frequency shield structure, wherein the shield structure surrounds the conductive pillar.

13. The computing device of claim 12, wherein the shield structure is coupled to a ground connection on the package substrate.

14. The computing device of claim 12, wherein the shield structure is coupled to a ground connection on the second die.

15. The computing device of claim 12, wherein the shield structure includes copper.

16. The computing device of claim 12, wherein the conductive pillar is one of a plurality of conductive pillars, and wherein the shield structure surrounds at least two of the plurality of the conductive pillars.

17. The computing device of claim 12, further comprising:

a redistribution layer at the first surface of the second die having a ground connection, wherein the shield structure is coupled to the ground connection on the redistribution layer.
Referenced Cited
U.S. Patent Documents
7679344 March 16, 2010 Carlson et al.
8335084 December 18, 2012 Lee et al.
8692368 April 8, 2014 Pan et al.
9129817 September 8, 2015 Elsherbini et al.
9229466 January 5, 2016 Saraswat et al.
9312198 April 12, 2016 Meyer
20060145059 July 6, 2006 Lee
20060170527 August 3, 2006 Braunisch
20140217547 August 7, 2014 Elsherbini et al.
20160071818 March 10, 2016 Wang
20170092412 March 30, 2017 Manusharow et al.
20180122764 May 3, 2018 Chen
Patent History
Patent number: 11984439
Type: Grant
Filed: Oct 16, 2018
Date of Patent: May 14, 2024
Patent Publication Number: 20200091128
Assignee: Intel Corporation (Santa Clara, CA)
Inventors: Adel A. Elsherbini (Chandler, AZ), Georgios Dogiamis (Chandler, AZ), Shawna M. Liff (Scottsdale, AZ), Zhiguo Qian (Chandler, AZ), Johanna M. Swan (Scottsdale, AZ)
Primary Examiner: Hoa B Trinh
Application Number: 16/161,578
Classifications
Current U.S. Class: 250/214.0R
International Classification: H01L 23/00 (20060101); H01L 23/532 (20060101); H01L 23/538 (20060101); H01L 23/66 (20060101); H01L 25/18 (20230101);