Gas Or Vapor Containing Mixture Patents (Class 201/4)
  • Patent number: 11708287
    Abstract: A method for the treatment of oil-based sludge by thermal desorption, characterized in that it comprises a step of conditioning of the sludge to be treated which includes the conditioning of the oil-based sludge with rice husk in a 1:2 ratio, before entering the TDU, increasing the technical and economic viability and cost relation of the thermal desorption for oil-based sludge treatment, showing better performance, and making possible the treatment of sludge on an industrial scale with effective rates of 28.6 m3/day, oil recovery of 54%, with a volumetric increase of 19%, compared to the original volume, and a fuel consumption adjusted to the historical data of the TDU from the economic point of view, which allows to have a high amount of rice husk, reducing the costs associated with the elimination of this agro-industrial waste.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: July 25, 2023
    Inventor: William Ariza Fontecha
  • Patent number: 11286440
    Abstract: Processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Pyrolysis in the presence of an inert gas is employed to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: March 29, 2022
    Assignee: Carbon Technology Holdings, LLC
    Inventors: James A. Mennell, Daniel J. Despen
  • Patent number: 11091716
    Abstract: This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: August 17, 2021
    Assignee: Carbon Technology Holdings, LLC
    Inventors: Daniel J. Despen, James A. Mennell, Steve Filips
  • Patent number: 10814525
    Abstract: A continuous liquefaction and filtration system has a first device configured to melt and filter solid waste plastic material. A second device is in communication with the first device, and configured to melt solid waste plastic material. A feeding system is configured to feed waste plastic material into the first device. A vacuum unit is in communication with the first device and the second device. The vacuum unit configured to control a pressure level within the system. A method of processing solid waste plastic including the steps of providing the system and solid waste plastic; inserting the solid waste plastic into the first device; heating the solid waste plastic material; extracting the molten plastic with one of the extractors; sending a portion of the molten plastic to second device and recirculating another portion in the first device; and extracting the melt polymers.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: October 27, 2020
    Assignee: VALGROUP S.A.
    Inventor: Lucas Salim Geronimi
  • Patent number: 9222025
    Abstract: A method for coking coals having high driving pressure properties in a “non-recovery” or “heat-recovery” coking oven, wherein a coking oven battery which is composed of coking oven chambers arranged side by side is used for cyclic coking of coal, and wherein an amount of coal preheated to a high temperature is admitted into the coking chamber that is to be filled at such a level that the driving pressure resulting from the coking can escape over the coke cake into the gas chamber, in such a manner that the coking oven chamber wall surrounding the coking oven chamber is relieved by the driving pressure resulting from the coking. Also disclosed is a device with which this method can be carried out.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: December 29, 2015
    Assignee: THYSSENKRUPP UHDE GMBH
    Inventors: Ronald Kim, Franz-Josef Schuecker
  • Publication number: 20150083571
    Abstract: Systems and methods for producing product gas fuel and solid char fuel from a carbon-containing feedstock are described. Feedstock is introduced into and transported through at least one substantially horizontal sublimation reaction chamber. An initial and final sublimation temperature is maintained within less than ±10° C. in an atmosphere free from external oxygen and externally supplied catalyst. The system is configured to not have any product gas leak out of the reaction chamber or oxygen leak into a hot box configured to heat the reaction chamber.
    Type: Application
    Filed: September 21, 2013
    Publication date: March 26, 2015
    Inventors: Michael L. Catto, Douglas M. Van Thorre
  • Patent number: 8952210
    Abstract: A green process and system are disclosed for utilizing a biomass filter aid in the filtration of a bio-oil. The process comprises filtering a bio-oil containing residual solids from a conversion reaction in the presence of the biomass filter aid to produce a filtered bio-oil. The biomass filter aid facilitates efficient removal of residual solids from the bio-oil. The spent biomass filter aid containing the residual solids may be recycled as a conversion feedstock or used as a combustion heat source in the biomass conversion system.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: February 10, 2015
    Assignee: KiOR, Inc.
    Inventor: Ronny W. Lin
  • Patent number: 8877995
    Abstract: Pyrolysis fuels and methods for processing pyrolysis fuel are provided. In one embodiment, a method of processing pyrolysis fuel converts biomass to pyrolysis fuel including pyrolysis oil and char particles. Also, the method includes resizing a portion of the char particles so that substantially all resized char particles have a largest dimension no greater than about 5 microns.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: November 4, 2014
    Assignee: UOP LLC
    Inventors: Lance Awender Baird, Stanley Joseph Frey
  • Patent number: 8859831
    Abstract: A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H2, CH4, CO, CO2, ammonia and hydrogen sulfide.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: October 14, 2014
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Larry G. Felix, Martin B. Linck, Michael J. Roberts
  • Publication number: 20140262724
    Abstract: Delayed coking drum quench overflow systems and methods, which relate to removing hydrocarbon particulates from an overflow stream in a delayed coking drum quench operation. In one embodiment, an improved overflow system incorporates one or more filters to remove hydrocarbon particulates from the system before passing through a conventional closed blowdown system.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Bechtel Hydrocarbon Technology Solutions, Inc.
    Inventors: John D. Ward, Scott Alexander
  • Patent number: 8828191
    Abstract: A method and apparatus for pyrolytic destruction of polymer products including whole vehicle vulcanised rubber tires is disclosed. The apparatus 111 has a reaction chamber 153 into which a tire can be placed, and immersed for pyrolytic decomposition in a molten alloy of zinc with a minor proportion of aluminium. The apparatus 111 has a heated reservoir 155 in which the alloy is maintained in a molten state, and from where it can be transferred to the reaction chamber 153 to immerse the tire. Fluid hydrocarbon byproducts are drawn off for condensation and recovery, and solid zinc sulphides are also recovered. Where steel belted tires are processed, carbon and steel residues are also recovered.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: September 9, 2014
    Inventor: Michael John Shaw
  • Publication number: 20140209446
    Abstract: A method of gasification using a downdraft gasifier having a plurality of vertically positioned tubes to create a pyrolysis zone, an oxidation zone beneath the pyrolysis zone and a reduction zone beneath the oxidation zone. The shape of the tubes eliminates the need for a restriction (hearth) in the gasifier, which limits the maximum achievable throughput. A rotating and vertically adjustable grate is located beneath, but not attached to, the reduction zone of the gasifier.
    Type: Application
    Filed: August 5, 2013
    Publication date: July 31, 2014
    Applicant: PHG Energy, LLC
    Inventors: Deon John Potgieter, Billy Freeman Hopper, Jeffrey Scott Brown, Mark Oliver Loftin
  • Patent number: 8722948
    Abstract: In a method for thermal processing of slurry, slurry is combined with a bio-mass to produce a mixture. The mixture is subjected in a heated mixer pump to a cracking temperature, thereby allowing the mixture to catalytically undergo a cracking reaction to produce a reaction mixture which is directly outgased in the mixer pump to produce an outgased portion and a solid portion. The outgased portion and the solid portion are separately discharged from the mixer pump; with the low boiling fraction of the outgased portion allowed to cool down for further processing, and the solid portion collected in a residual matter container for further processing.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: May 13, 2014
    Inventor: Jürgen Buchert
  • Patent number: 8696937
    Abstract: A process for obtaining petrochemical products from a carbonaceous feedstock is provided. The carbonaceous feedstock may be coal, coke, lignite, biomass, bitumen and the like. The carbonaceous feedstock is pulverized and fed to a pyrolysis reactor where the feedstock is pyrolyzed at 700-1000° C. at a pressure of 2-25 bar for 2-10 seconds, wherein the feedstock is entrained in hot syngas during the pyrolysis process.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: April 15, 2014
    Inventor: Keki Hormusji Gharda
  • Publication number: 20140073824
    Abstract: The present disclosure pertains to biomass pyrolysis processes and systems that decrease entrainment of char and other contaminants in the pyrolysis vapors by filtering the vapors in a heated container comprising a moving bed granular filter (MBGF), which in turn, comprises granular heat carrier. The granular heat carrier is heated within the MBGF and fed directly to the pyrolysis reactor, optionally along with filtered solids such as char. In certain embodiments, the MBGF additionally comprises at least one upgrading catalyst that contacts the vapors to produce a hydrocarbon mixture fungible with a petroleum-derived transportation fuel, a hydrocarbon transportation fuel component, or mixtures thereof.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 13, 2014
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Samuel T. Jones, Jonathan T. Gorke, Mark A. Hughes
  • Publication number: 20140069797
    Abstract: The present disclosure relates generally to novel biomass pyrolysis processes and systems that decrease entrainment of char and other contaminants with the pyrolysis vapors as a direct consequence of the biomass feedstock comprising particles that are larger than a defined minimum diameter. The biomass feedstock may optionally be compressed to form feedstock pellets that are larger than a defined minimum diameter.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 13, 2014
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Daren E. Daugaard, Samuel T. Jones, Johnathan T. Gorke
  • Publication number: 20130327628
    Abstract: Methods and apparatus to improve hot gas filtration to reduce the liquid fuel loss caused by prolonged residence time at high temperatures are described. The improvement can be obtained by reducing the residence time at elevated temperature by reducing the temperature of the pyrolysis vapor, by reducing the volume of the pyrolysis vapor at the elevated temperature, by increasing the volumetric flow rate at constant volume of the pyrolysis vapor, or by doing a combination of these.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Applicant: UOP LLC
    Inventors: Lance A. Baird, Timothy A. Brandvold, Stefan Müller
  • Publication number: 20130233692
    Abstract: A process for treating coal includes introducing coal into a chamber and passing an oxygen deficient sweep gas into contact with the coal, the sweep gas being at a higher temperature than the temperature of the coal so that heat is supplied to the coal. The process further includes providing additional heat to the coal indirectly by heating the chamber, wherein the heating of the coal by the sweep gas and by the indirect heating from the chamber causes condensable volatile components to be released into the sweep gas. The proportion of heat supplied to the coal by the sweep gas is less than 40% of the total heat supplied to the coal. The sweep gas is then removed from the chamber and treated to remove condensable components of the coal.
    Type: Application
    Filed: April 23, 2013
    Publication date: September 12, 2013
    Applicant: C20 Technologies, LLC
    Inventor: Franklin G. Rinker
  • Publication number: 20130214207
    Abstract: A process for obtaining petrochemical products from a carbonaceous feedstock is provided. The carbonaceous feedstock may be coal, coke, lignite, biomass, bitumen and the like. The carbonaceous feedstock is pulverized and fed to a pyrolysis reactor where the feedstock is pyrolyzed at 700-1000° C. at a pressure of 2-25 bar for 2-10 seconds, wherein the feedstock is entrained in hot syngas during the pyrolysis process.
    Type: Application
    Filed: October 24, 2011
    Publication date: August 22, 2013
    Inventor: Keki Hormusji Gharda
  • Patent number: 8496805
    Abstract: Petroleum cokes derived from extra-heavy crude sources can be made more amenable to quenching by adding water or a water/light oil mixture to the coker feed downstream of the furnace. The coke product resulting from this addition of normally volatile liquids to the hot coker feed is still relatively dense but is more friable and usually is in a compact, relatively free-flowing, granular form. The coke is more amenable to uniform quenching in the drum and so can be cut and discharged with a reduced risk of eruptions and a reduced risk of fires in the coke pit or when the coke is subsequently handled and transported.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 30, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Craig Y. Sabottke, Fritz A. Bernatz, Eric W. Fryatt, Christopher P. Eppig, Jordan K. Lambert
  • Publication number: 20130153394
    Abstract: The present invention relates to a method for producing fuels from solid biomass and plastics, characterized in that in a first step biomass and plastics are dispersed at 300-400° C. in the presence of recycled carrier oil; in a second step the obtained mixture is brought to reaction at 300-400° C.; in a third step the resulting gaseous, liquid, and solid products are separated from one another and optionally further processed; wherein the ratio of biomass to plastic is in the range of 80:20 to 10:90% by weight, and wherein the method is conducted without externally supplying carrier oil and wherein the method is carried out without externally supplying catalyst. The invention further relates to facilities for carrying out the method.
    Type: Application
    Filed: July 14, 2011
    Publication date: June 20, 2013
    Inventor: Emil A.J. Wieser-linhart
  • Publication number: 20130098751
    Abstract: A method for torrefaction of lignocellulosic biomass comprising: continuously feeding the biomass to an upper inlet to the torrefaction reactor vessel such that the biomass material is deposited on an upper tray assembly of tray assemblies stacked vertically within the reactor; as the biomass moves over each tray assembly, heating and drying the biomass material with a non-oxidizing gas under a pressure of at least 3 bar gauge and at a temperature of at least 200° C.; cascading the biomass down through the trays by passing the biomass through an opening in each of the trays to deposit the biomass on the tray of the next lower tray assembly; discharging torrefied biomass from a lower outlet of the torrefaction reactor, and circulating gas extracted from the reactor vessel back to the reactor.
    Type: Application
    Filed: June 28, 2012
    Publication date: April 25, 2013
    Applicant: ANDRITZ INC.
    Inventors: Andrew EYER, Bertil STROMBERG, Joseph Monroe RAWLS, Brian F. GREENWOOD
  • Patent number: 8425633
    Abstract: Methods, process, apparatus, equipment, and systems are disclosed for converting biomass into bio-oil fractions for chemicals, materials, feedstocks and fuels using a low-cost, integrated fast pyrolysis system. The system improves upon prior art by creating stable, bio-oil fractions which have unique properties that make them individually superior to conventional bio-oil. The invention enables water and low-molecular weight compounds to be separated into a final value-added fraction suitable for upgrading or extracting into value-added chemicals, fuels and water. Initial bio-oil fractions from the process are chemically distinct, have low-water content and acidity which reduces processing costs normally associated with conventional bio-oil post-production upgrading since fewer separation steps, milder processing conditions and lower auxiliary inputs are required. Biochar is stabilized so that it can be handled safely.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: April 23, 2013
    Assignee: Avello Bioenergy, Inc.
    Inventors: Dennis Stephan Banasiak, Cody James Ellens, Anthony Joseph Sherwood Pollard, Jared Nathaniel Brown
  • Publication number: 20130062184
    Abstract: Embodiments of methods and apparatuses for rapid thermal processing of carbonaceous material are provided herein. The method comprises the step of contacting a carbonaceous feedstock with heated inorganic heat carrier particles at reaction conditions effective to rapidly pyrolyze the carbonaceous feedstock to form a product stream comprising pygas, pyrolysis oil, and solids. The solids comprise char and cooled inorganic heat carrier particles. The reaction conditions include a reactor pressure of about 70 kPa gauge or greater.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Applicant: UOP LLC
    Inventors: Sathit Kulprathipanja, Paolo Palmas
  • Publication number: 20130030062
    Abstract: A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 31, 2013
    Applicant: RENTECH, INC.
    Inventors: Weibin Jiang, Bruce E. McComish, Bryan C. Borum, Benjamin H. Carryer, Mark D. Ibsen, Mark Robertson, Eric Elrod, Sim Weeks, Harold A. Wright
  • Publication number: 20120289753
    Abstract: The present invention relates to the recycling by depolymerisation through thermolysis. A method and installation for depolymerisation through efficient thermolysis for recycling is provided that allow the production of light hydrocarbons having high quality and being free of impurities and contaminants. This objective is achieved by methods and installations where either the secondary products of the process are re-fed to supply energy for the main recycling process or are refined to manufacture final usable and saleable products. Therefore, the use of the energy content of the starting materials is maximised by assuring their full utilisation, minimising the environmental harm while an energetically autonomous installation is provided. All the components of the waste or starting material may be recycled, by physico-chemical means, and no additional contaminant waste is produced.
    Type: Application
    Filed: November 25, 2010
    Publication date: November 15, 2012
    Inventors: Victorino Luengo Marin, Javier Guilarte Saen
  • Patent number: 8287696
    Abstract: A new approach to the production of coke. In this process multiple optimized value streams are produced from a coke facility located at mine mouth or locally at an existing plant. As part of the process, lower cost Indiana/Illinois Basin-type coals are blended with conventional metallurgical coals. The blending process is optimized to meet coke quality requirements and simultaneously to obtain a pyrolysis gas composition suitable for production of ancillary products including liquid transportation fuels, fertilizer, hydrogen, and electricity. By using lower cost Indiana/Illinois Basin coal it is possible to reduce net coal costs. This process provides a new direction and approach for the production of coke in the future that optimizes value over multiple product streams while reducing both business and technological risk.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: October 16, 2012
    Assignee: Purdue Research Foundation
    Inventors: Robert A. Kramer, Libbie S. W. Pelter, Harvey Abramowitz, Hardarshan S. Valia, Allen Ellis
  • Publication number: 20120217148
    Abstract: The invention pertains to a method for operating a coke furnace arrangement, wherein the coke oven gas accumulated during the coking process is utilized as a working gas. According to the invention, a synthesis gas produced from fossil fuel, preferably coal, by means of a gasification process is supplied as fuel gas in order to provide at least part of the thermal energy required for the coking process.
    Type: Application
    Filed: August 18, 2010
    Publication date: August 30, 2012
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventor: Johannes Menzel
  • Publication number: 20120125757
    Abstract: The present invention provides a pyrolysis system comprising an entrained flow pyrolyser having an opening through which biomass can be added. The pyrolyser also has an inlet for hot exhaust gas, an outlet for pyrolysed biomass and an outlet for syngas. The system has a burner for producing hot exhaust gas and a conduit between the burner and the hot exhaust gas inlet. A syngas extraction means for extracting syngas from the pyrolyser. The syngas extraction means extracts syngas from the pyrolyser at a rate such that the internal pressure within the pyrolyser never exceeds the pressure external to the pyrolyser.
    Type: Application
    Filed: July 13, 2010
    Publication date: May 24, 2012
    Applicant: PROCESS LIMITED
    Inventor: Robert D. Eden
  • Patent number: 8100990
    Abstract: Methods, process, apparatus, equipment, and systems are disclosed for converting biomass into bio-oil fractions for chemicals, materials, feedstocks and fuels using a low-cost, integrated fast pyrolysis system. The system improves upon prior art by creating stable, bio-oil fractions which have unique properties that make them individually superior to conventional bio-oil. The invention enables water and low-molecular weight compounds to be separated into a final value-added fraction suitable for upgrading or extracting into value-added chemicals, fuels and water. Initial bio-oil fractions from the process are chemically distinct, have low-water content and acidity which reduces processing costs normally associated with conventional bio-oil post-production upgrading since fewer separation steps, milder processing conditions and lower auxiliary inputs are required. Biochar is stabilized so that it can be handled safely.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: January 24, 2012
    Assignee: Avello Bioenery, Inc.
    Inventors: Cody James Ellens, Jared Nathaniel Brown, Anthony Joseph Sherwood Pollard, Dennis Stephan Banasiak
  • Publication number: 20110284359
    Abstract: Processes for controlling afterburn in a reheater and loss of entrained solid particles in reheater flue gas are provided. Carbonaceous biomass feedstock is pyrolyzed using a heat transfer medium forming pyrolysis products and a spent heat transfer medium comprising combustible solid particles. The spent heat transfer medium is introduced into a fluidizing dense bed. The combustible solid particles of the spent heat transfer medium are combusted forming combustion product flue gas in a dilute phase above the fluidizing dense bed. The combustion product flue gas comprises flue gas and solid particles entrained therein. The solid particles are separated from the combustion product flue gas to form separated solid particles. At least a portion of the separated solid particles are returned to the fluidizing dense bed.
    Type: Application
    Filed: May 20, 2010
    Publication date: November 24, 2011
    Applicant: UOP LLC
    Inventors: Paul A. Sechrist, Andrea G. Bozzano
  • Publication number: 20110278276
    Abstract: A process is proposed for continuously purifying a solid mixture comprising a sublimable product of value and components with lower and higher sublimation temperatures by fractional sublimation/desublimation in a hot wall tubular oven (1) with supply of the solid mixture together with an inert gas stream, into which the solid mixture is dispersed by means of a dispersing unit (2), at one end of the hot wall tubular oven (1), heating the dispersed solid mixture in the hot wall tubular oven (1) at a temperature at which the product of value sublimes to obtain a gas mixture comprising components with a higher sublimation temperature than the product of value as solid particles, passing the gas mixture comprising components with a higher sublimation temperature than the product of value as solid particles through a hot gas filter (3) with a suitable pore size in order to retain the solid particles with a higher sublimation temperature than the product of value, cooling the gas mixture from which the components
    Type: Application
    Filed: January 25, 2010
    Publication date: November 17, 2011
    Applicant: BASF SE
    Inventors: Markus Linsenbuehler, Bernd Sachweh, Joerg Halpap, Martin Karches, Reinhold Rieger
  • Patent number: 8012437
    Abstract: The invention is a method of separating metals such as zinc, lead and cadmium from iron in secondary feed stocks such as EAF Dust, BOF Sludge, mill scale, iron fines, tire dust and other iron and zinc containing residues and dusts. The method includes the steps of reduction roasting the feed stocks at a volatizing temperature sufficient to volatilize the zinc and other metals into metal fumes but insufficient to volatize iron and then collecting the metal fumes as a metal dust. The metal dust is then leached with a leaching liquid to form a leach liquor and a leach residue. The leach liquor is then purified by zinc dust cementation to form a purified liquor and a zinc dust cement residue. The purified liquor is then separated from the zinc dust cement residue, and a zinc recovery step is then performed on the purified liquor.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: September 6, 2011
    Inventor: George Puvvada
  • Publication number: 20110139597
    Abstract: A process and system for separating water from bio-oil by using a partial condenser. The process comprises partially condensing vapor conversion products from a biomass conversion reaction to produce a water-rich overhead stream and a water-depleted stream comprising condensed bio-oil. The partial condenser removes a substantial portion of the water from the bio-oil, while providing an effective and flexible process for producing bio-oil.
    Type: Application
    Filed: August 9, 2010
    Publication date: June 16, 2011
    Applicant: KIOR, INC.
    Inventor: Ronny W. Lin
  • Publication number: 20110136971
    Abstract: The present invention provides a process for the controlled gasification of a carbonaceous feedstock, including: pyrolizing the feedstock to produce a gas product and a solid product, wherein the gas product includes methane and noxious chemicals and the solid product includes carbon; and controlling the pyrolizing step using feedback related to constituents of the gas product. The present invention also provides a system for the controlled gasification of a carbonaceous feedstock, including: a pyrolysis unit including a heater and a conveyor for transporting the feedstock through the heater; a resultant chamber disposed downstream of the pyrolysis unit for separating gas products and solid products; means for adjusting the temperature of the solid products; and a filter for sequestering noxious materials from the gas products, wherein the filter uses at least some of the solid products to filter at least a portion of the gas products.
    Type: Application
    Filed: June 8, 2010
    Publication date: June 9, 2011
    Inventor: Richard D. TUCKER
  • Publication number: 20110114144
    Abstract: This invention involves pyrolysis of feedstock by introducing carbonaceous feedstock, into a hopper and moving it into a reactor tube enclosed in an oven, generating heat within the oven that is in part transferred to the feedstock, heating it to sufficient temperature to pyrolyze the feedstock into useful volatiles and char. A Venturi system produces a negative pressure directing volatiles into a pyro-gas oven producing heat necessary for pyrolysis and generating useful excess heat. The extruded pyrolysis char has uses including charcoal fuel, soil amendments, and activated charcoal while liquids can be produced for processing into fuels. Excess heat may be used to heat water, steam, and air, may be used in air heating and cooling systems, perform mechanical work with a Stirling engine or generate electricity on the order of 100 kW and higher. The system may be operated in a carbon neutral or even carbon negative manner, allowing sequestration of atmospheric carbon dioxide.
    Type: Application
    Filed: November 17, 2009
    Publication date: May 19, 2011
    Applicant: Green Liquid and Gas Technologies
    Inventors: Alex E.S. Green, Bruce A. Green
  • Publication number: 20110048915
    Abstract: The invention relates to waste processing and to producing hydrocarbons from domestic and industrial organic waste by pyrolysis. The inventive waste processing method involves carrying out the first and second pyrolysis stages, fractionating pyrolysis products and processing each fraction for producing useful products. The second pyrolysis stage is carried out simultaneously with the electromagnetic action produced on the pyrolysis products. The device for carrying out said method comprises a two-sectional pyrolysis reactor. An electromagnetic source is arranged on the second section of the reactor. The output of the second section is connected to a system for dividing the vaporous pyrolysis products. The technical result consists in increasing the waste processing effectiveness and producing solid, liquid and vaporous fuel components.
    Type: Application
    Filed: August 23, 2010
    Publication date: March 3, 2011
    Applicant: Zakrytoe Aktsionernoye Obschestvo "Finansovo- Promyshlennaya Gruppa'Tezaurum'"
    Inventor: Sergei Gennadievich Gaga
  • Publication number: 20110011720
    Abstract: A process for treating agglomerating coal includes providing dried, pulverized, agglomerating coal, and treating the coal in a vessel with a gas stream having an oxygen content sufficient to form at least some oxides on surface of coal particles, wherein the oxides are sufficient to convert coal into substantially non-agglomerating coal. The treated coal is transferred into a pyrolyzing chamber and passed into contact with an oxygen deficient sweep gas, the sweep gas being at a higher temperature than the temperature of the coal so that heat is supplied to the coal. The process further includes providing additional heat to coal indirectly by heating the chamber, wherein the heating of coal by the sweep gas and by the indirect heating from the chamber causes condensable volatile components to be released into the sweep gas. The sweep gas is removed from the chamber and treated to remove condensable components of coal.
    Type: Application
    Filed: September 10, 2009
    Publication date: January 20, 2011
    Inventor: Franklin G. Rinker
  • Publication number: 20100307909
    Abstract: Apparatus for the manufacture of charcoal, comprising a unit having walls defining a primary combustion chamber, and a material inlet for allowing a feed of wood chips though said material inlet into said apparatus. A trough is located at a lower height than said material inlet such that material passing through said material inlet is able to fall into the trough. An air inlet is located below the material inlet such that, when wood chips are located within the trough piled up to said material inlet, air passing from said air inlet passes through said wood-chips and into the primary combustion chamber.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 9, 2010
    Inventor: Andrew Mark Elliott
  • Patent number: 7799960
    Abstract: In a method and apparatus for thermal processing of slurry, the slurry is combined with a bio-mass to produce a mixture which is then subjected to a cracking temperature in a receiving tank, thereby liquefying and allowing the mixture to catalytically undergo a cracking reaction. The cracking reaction which the liquefied mixture undergoes is continued in a mixer pump to thereby produce a reaction mixture. The reaction mixture is outgased in an intermediate tank to separate an outgased fraction from a non-outgased fraction. Subsequently, the outgased fraction is allowed to cool down, thereby producing fuel, while the non-outgased fraction is returned to the receiving tank and subjected again to the cracking temperature. Residual matter of the non-outgased fraction settles in the intermediate tank and is periodically removed.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: September 21, 2010
    Inventor: Jürgen Buchert
  • Patent number: 7534326
    Abstract: Clamping system and method for clamping the bottom head cover of a coke drum to the bottom flange thereof are disclosed. The system and method include determining the flange stiffness or resistance to deflection resulting from the spring-like force exerted on the bottom head cover and bottom flange gasket seating surface by the gasket in its compressed state. This deflection information may then be used to estimate the minimum number of clamps needed to ensure sufficient load remains on the gasket at the midpoints between the clamps to effectively keep the gasket sealed. An appropriate number of clamps may then be disposed around the periphery of the bottom flange to clamp it to the bottom head cover. In one practical design, each clamp engages a lug attached to the periphery of the bottom head cover such that the clamp does not extend underneath the bottom head cover when clamped.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: May 19, 2009
    Assignee: ConocoPhillipcs Company
    Inventors: Brian J. Doerksen, Vance C. Green, Jinyang James Lu, Charles Schroeder, Meir Snir, Mohamad T. Ali
  • Publication number: 20080264771
    Abstract: A fast pyrolysis apparatus (200) for producing pyrolysis liquid, such as oil or tar, char and pyrolysis gas from biomass, such as straw, comprises a centrifuge chamber (204) and a rotor (210) arranged to impart rotation on the biomass in the centrifuge chamber to force the biomass outwardly under the action of centrifugal forces. A furnace (206) arranged coaxially around the centrifuge chamber (204) maintains the temperature at an outer reactive wall of the centrifuge chamber at an elevated temperature to effect the pyrolysis process at or near the reactive wall. The apparatus comprises a condenser (218) arranged coaxially with and surrounded by the centrifuge chamber (204). The apparatus may be accommodated by a mobile unit for simultaneously collecting biomass from a field and processing the biomass in the apparatus.
    Type: Application
    Filed: May 3, 2006
    Publication date: October 30, 2008
    Inventors: Kim Dam-Johansen, Niels Bech, Peter. A. Jensen
  • Publication number: 20080210537
    Abstract: The invention is a method of separating metals such as zinc, lead and cadmium from iron in secondary feed stocks such as EAF Dust, BOF Sludge, mill scale, iron fines, tire dust and other iron and zinc containing residues and dusts. The method includes the steps of reduction roasting the feed stocks at a volatizing temperature sufficient to volatilize the zinc and other metals into metal fumes but insufficient to volatize iron and then collecting the metal fumes as a metal dust. The metal dust is then leached with a leaching liquid to form a leach liquor and a leach residue. The leach liquor is then purified by zinc dust cementation to form a purified liquor and a zinc dust cement residue. The purified liquor is then separated from the zinc dust cement residue, and a zinc recovery step is then performed on the purified liquor.
    Type: Application
    Filed: February 28, 2008
    Publication date: September 4, 2008
    Inventor: George Puvvada
  • Publication number: 20080128259
    Abstract: Methods and systems for substantially continuously treating comminuted material containing carbon and hydrogen, for example, used tires, are provided. The methods include the steps of introducing the tire material to an elongated chamber, transferring the tire material through the elongated chamber, heating the tire material to a temperature sufficient to pyrolyze the material to produce a gaseous stream; discharging the gaseous stream from the chamber, and cooling at least some of the gaseous stream to liquefy components of the stream. The transfer may be effected by a flexible, center-less screw conveyor to minimize material buildup in the vessel. The cooling of the gaseous stream may be practiced by reverse condensation. One or more re-usable fuel streams are provided by aspects of the invention.
    Type: Application
    Filed: November 6, 2007
    Publication date: June 5, 2008
    Inventors: Stanislaw Kostek, Stanislaw Kostek
  • Patent number: 7004999
    Abstract: A method of continuously capturing BioOil and its constituents from a gas stream produced in a fast pyrolysis/thermolysis process, in a usable liquid form so as to produce a non-condensable gas free of fouling contaminates. The method includes separating BioOil and its constituents from a gas stream using hot inertial separation to maintain the temperature of said BioOil and its constituents above a temperature at which the thick and/or sticky constituents cause inefficient operation of the equipment but low enough so that they do not undergo rapid degradation. Next the gas velocity is reduced to a temperature sufficiently low to allow droplets in the gas stream to settle out but high enough so that a viscosity of said droplets remains low enough to avoid inefficient operation of the separation equipment. Finally, liquid is condensed out of the gas stream.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: February 28, 2006
    Assignee: Dynamotive Energy Systems Corporation
    Inventors: Warren L. Johnson, Gholam H. Yavari, Desmond St. A. G. Radelin
  • Patent number: 6881303
    Abstract: A plastic as a material to be treated and an additive such as unsaturated fatty acid oil are mixed, and the mixture is heated in a pyrolysis tank at a temperature of 300° C. to 450° C. by a heating member to thereby thermally decompose the mixture. A gas component produced during the heating process is then removed and a pyrolysate is thus produced.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: April 19, 2005
    Assignee: Tokyo Ertec Co., Ltd.
    Inventors: Yoji Inoue, Satoru Aikawa, Norihiro Inagaki, Shigeru Tasaka
  • Patent number: 6875317
    Abstract: Wastes mainly containing any one or two or more of raw garbage, waste lumber, paper diapers, waste plastics, and organic sludge discharged from the food industry, common houses, etc. are exposed to high-temperature steam of 510 to 900° C. in an oxygen-free state, preferably while being stirred, to be carbonized. Thereby, the amount of wastes is reduced safely and efficiently with no fear of generating harmful substances such as dioxin, and moreover the carbonized wastes can be reused effectively for applications to fuel or the like.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: April 5, 2005
    Inventor: Jiro Toyoda
  • Patent number: 6875316
    Abstract: Related to a blast furnace coke and a production method thereof. A coke having high reactivity and high strength in which coke strength, reactivity with CO2 and a pore size distribution are each at a desired level can be produced at a low cost by using a coal blend composed of a small number of brands comprising a large quantity of caking coal having medium rank and low fluidity. The blast furnace coke, being obtained by charging a coal blend comprising 60 wt % or more of semi-heavy caking coal having medium rank and low fluidity in which a content of inert component is 30 vol % or more in total or another coal blend comprising 60 wt % to 95 wt % of semi-heavy caking coal having medium rank and low fluidity in which mean reflectance (Ro) is 0.9 to 1.1 and maximum fluidity (MF) is less than 3.0 and the balance being a caking coal in which mean reflectance (Ro) exceeds 1.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: April 5, 2005
    Assignee: JFE Steel Corporation
    Inventors: Koji Hanaoka, Seiji Sakamoto, Katsutoshi Igawa, Yutaka Yamauchi, Shizuki Kasaoka, Toshiro Sawada, Koichi Shinohara, Yuji Tsukihara, Shinjiro Baba
  • Publication number: 20040148851
    Abstract: A method is provided for converting coal to coke by the steps of blending pulverized coal with water and a binder to a kneadable dough; and baking said dough in a reducing environment.
    Type: Application
    Filed: January 30, 2003
    Publication date: August 5, 2004
    Inventor: George Montgomery
  • Publication number: 20040079628
    Abstract: Closed apparatus and processes by which carbon feedstock, is composed of a mixture of non-coking coal fines and another carbonaceous material, such as waste coke fines are disclosed. The coal and coke fines are mixed together and may be formed into solid pieces. The mixture alone or as solid pieces is fired through pyrolyzation into solid pieces of coke, with solid and gaseous by-products of pyrolyzation being recycled for use within the coke-producing closed system, thereby reducing or eliminating release of undesirable substances to the environment. A char-forming binder may or may not be added to the carbon mixture prior to pyrolyzation.
    Type: Application
    Filed: October 22, 2003
    Publication date: April 29, 2004
    Inventors: Craig N. Eatough, Jon S. Heaton, Steven R. Eatough