Utilizing Liquid-liquid Extracting Of Distillation Product Patents (Class 203/43)
  • Patent number: 10640459
    Abstract: Disclosed is a method for inhibiting the formation of by-products from dinitriles, such as the formation of cyclopentylideneimine (CPI) from Adiponitrile (ADN), comprising adding an effective amount of a Brønsted acid to the ADN. Also disclosed is a method of refining a dinitrile compound by distillation the method comprising the steps of: (a) supplying (i) a feedstream comprising the dinitrile compound and (ii) a Brønsted acid to a distillation apparatus; and (b) withdrawing from the distillation apparatus an overhead distillate stream comprising the dinitrile compound.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 5, 2020
    Assignee: INVISTA North America S.a.r.l.
    Inventor: William J. Tenn, III
  • Patent number: 10392545
    Abstract: A process is disclosed for making CF3CF?CHF. The process involves reacting CF3CClFCCl2F with H2 in a reaction zone in the presence of a catalyst to produce a product mixture comprising CF3CF?CHF. The catalyst has a catalytically effective amount of palladium supported on a support selected from the group consisting of alumina, fluorided alumina, aluminum fluoride and mixtures thereof and the mole ratio of H2 to CF3CClFCCl2F fed to the reaction zone is between about 1:1 and about 5:1. Also disclosed are azeotropic compositions of CF3CClFCCl2F and HF and azeotropic composition of CF3CHFCH2F and HF.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: August 27, 2019
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Velliyur Nott Mallikarjuna Rao, Mario Joseph Nappa, Allen Capron Sievert
  • Patent number: 9695115
    Abstract: The invention relates to a method for preparing isocyanates by phosgenating the corresponding amines, wherein low-boiling secondary components, excess phosgene, and the co-product hydrogen chloride are separated from the crude liquid isocyanate stream, which is obtained after the phosgenation has occurred, within a maximum of 60 minutes, and wherein the crude liquid isocyanate stream is not exposed to temperatures above 250° C. until said separation.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: July 4, 2017
    Assignee: Covestro Deutschland AG
    Inventors: Rainer Bruns, Wolfgang Lorenz, Andreas Karl Rausch, Stefan Wershofen, Tim Loddenkemper
  • Patent number: 9676800
    Abstract: Disclosed herein are methods for recovering diphosphonite-containing compounds from mixtures comprising organic mononitriles and organic dinitriles, using multistage countercurrent liquid-liquid extraction. Recovery is enhanced with one or more method steps. In a first step, a portion of the heavy phase from the settling section of the first stage is recycled to the settling section of the first stage. In a second step, a portion of the light phase from the settling section of the first stage is recycled to the mixing section of the first stage. In a third step, the first stage takes place in a mixer-settler, a Lewis base is introduced into the settling section of the first stage, and a complex of Lewis acid and Lewis base is formed in this settling section. In a fourth step, a polyamine is added to the first stage.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: June 13, 2017
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: William J. Tenn, III, Sudhir N. V. K. Aki, Thomas E. Vos, Tseng H. Chao
  • Patent number: 9593075
    Abstract: The invention relates to a method for preparing isocyanates by phosgenating the corresponding amines, wherein low-boiling secondary components, excess phosgene, and the co-product hydrogen chloride are separated from the crude liquid isocyanate stream, which is obtained after the phosgenation has occurred, within a maximum of 60 minutes, and wherein the crude liquid isocyanate stream is not exposed to temperatures above 250° C. until said separation.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 14, 2017
    Assignee: Covestro Deutschland AG
    Inventors: Rainer Bruns, Wolfgang Lorenz, Andreas Karl Rausch, Stefan Wershofen, Tim Loddenkemper
  • Publication number: 20150140030
    Abstract: The invention relates to a method for preparing a composition that is very rich in squalene produced by fermentation of micro-organisms. The method is characterised in that it comprises a purification step selected from the group including: supercritical CO2 extraction in a multi-stage counter-current fractionation column with extract reflux, and short-path molecular distillation.
    Type: Application
    Filed: April 15, 2013
    Publication date: May 21, 2015
    Inventors: Philippe Looten, Samuel Patinier, Michel Perrut, Vincent Perrut
  • Patent number: 9005405
    Abstract: Recovering high purity benzene from hydrocarbon feedstock containing aromatics and non-aromatics is implemented by simple and low-cost modifications to conventional extractive distillation columns (EDCs). Methyl cyclohexane (MCH) that is generated through non-selective hydrogenation of toluene in hydrodesulfurization (HDS) units is a major contaminant in benzene production. To meet MCH specifications, often times the extractive distillation (ED) process for recovering purified benzene is operated with excessive benzene loss to the overhead raffinate stream, producing a lower quality non-aromatic product.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: April 14, 2015
    Assignees: CPC Corporation, Taiwan, AMT International, Inc.
    Inventors: Kuang-Yeu Wu, Tzong-Bin Lin, Fu-Ming Lee, Tsung-Min Chiu, Jeng-Cheng Lee
  • Publication number: 20150065753
    Abstract: In a process for separating a mixture comprising cyclohexanone and phenol, at least a portion of the mixture is distilled in the presence of a solvent including at least two alcoholic hydroxyl groups attached to non-adjacent saturated carbon atoms and at least one hemiketal defined by the formula (I) or the formula (II): wherein R1, the same or different at each occurrence, is independently an alkylene group having from 2 to 10 carbon atoms, R2 is an alkylene group having from 4 to 10 carbon atoms, and R3 is hydrogen or the following group: and/or an enol-ether derived from the hemiketal defined by the formula (I) or the formula (II), wherein the total concentration of the hemiketal and the enol-ether, expressed in terms of weight percentage on the basis of the total weight of the feed to the distilling step (a), is at least 0.01%.
    Type: Application
    Filed: April 9, 2013
    Publication date: March 5, 2015
    Inventors: Keith H. Kuechler, Francisco M. Benitez, Krystle J. Chavez, Christopher L. Becker, John L. Heidman, JR.
  • Patent number: 8946309
    Abstract: Process to generate synthesis gas and/or liquid raw materials and/or energy materials from waste and/or biomass by performing the following steps: a) solvolysis of the organic components of waste and/or biomass in an alkaline solution or hydrate smelter at a temperature range of 150° to 250° C. and pressure between 3 and 12 bar, whereby the organic components are converted into at least one liquid phase and the inorganic components are sedimented; b) elimination of the inorganic components from the liquid phase by physical separation methods; c) transfer of the vapors generated during the solvolysis into a rectification column, where the organic components are separated from water; and d) further separation of the organic components by rectification, extraction and sorption and/or conversion by thermal gasification into synthesis gas or burnable gas.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: February 3, 2015
    Inventors: Wenzel Bergmann, Thomas Müller
  • Patent number: 8906235
    Abstract: When lignocellulosic biomass hydrolysate is included in fermentation medium, the broth resulting from biocatalyst production is complex with low filterability. A heat treatment was found to increase filterability, allowing efficient separation of a liquid fraction from a solid fraction, which is further processed for water recycle and syrup production.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: December 9, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Susan Marie Hennessey, Annemarie Mitchell, Mathias E. Stolarski, James Gregory Wood
  • Publication number: 20140262740
    Abstract: A process for the removal of sulfur compounds from a hydrocarbon stream is disclosed. The process includes extractive distillation of a feed stock coupled with a solvent recovery column having a vapor side draw containing the sulfur compound impurities.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: GTC Technology US LLC
    Inventor: Michael McCaulley
  • Publication number: 20140228601
    Abstract: Processes for isolating 1,1,1,2,3-pentachloropropane from a crude product stream containing the 1,1,1,2,3-pentachloropropane and ferric chloride. The processes may include deep distillation of the crude, treatment of the crude with a reagent that deactivates the ferric chloride followed by distillation on the deactivated crude stream, aqueous washing of the crude product stream to remove ferric chloride followed by distillation on the deactivated crude stream. Other embodiments simultaneously prepare 1,1,2,3-tetrachloroprene and 1,1,1,2,3-pentachloroprane.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 14, 2014
    Inventor: Occidental Chemical Corporation
  • Patent number: 8721794
    Abstract: Lignocellulosic biomass hydrolysate fermentation broth may be processed to produce a high solids syrup having relatively low viscosity that has a high energy content and may be burned in a fermentation production process. The high solids syrup was achieved through liquid/solid separation of broth or depleted broth producing a thin stillage with low suspended solids allowing evaporation to high solids while maintaining low viscosity.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: May 13, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Susan Marie Hennessey, Rahul B. Kasat
  • Patent number: 8680358
    Abstract: A method for cross connecting the lean solvent supply lines between the liquid liquid extraction (LLE) and the extractive distillation (ED) processes thereby using the LLE column as the outlet for removing accumulated heavy hydrocarbons (HCs) and polymeric materials from the solvent loop of both processes to maintain their solvent performance. The unique capabilities of the LLE column in rejecting heavy HCs from the solvent into a raffinate product stream that leaves the system enable the removal of the accumulated heavy HCs and polymeric materials from the closed solvent loop of the ED process when their lean solvent loop are cross connected. Cross connection requires minimum equipment change. In the revamped system, the solvent recovery column (SRC) in LLE process supplies lean solvent for the extractive distillation column while the SRC of the ED process supplies lean solvent for LLE column.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: March 25, 2014
    Assignees: AMT International, Inc., CPC Corporation, Taiwan
    Inventors: Fu-Ming Lee, Tzong-Bin Lin, Kuang-Yeu Wu, Jyh-Haur Hwang, Tsung-Min Chiu, Ciputra Jap, Yung-Sheng Ho
  • Publication number: 20140058131
    Abstract: This invention relates to processes for producing acetic acid and, in particular, to improved processes for recovering permanganate reducing compounds formed during the carbonylation of methanol in the presence of a carbonylation catalyst to produce acetic acid. Alkyl halides are removed or reduced from the recovered permanganate reducing compounds.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Applicant: Celanese International Corporation
    Inventors: Robert Glenn Golightly, Oyeyemi Oyerinde, Mark O. Scates, Ronald D. Shaver
  • Patent number: 8608912
    Abstract: Embodiments of extraction unit and an analysis method are provided. In one embodiment, the analysis method includes the steps of providing a feed stream and a species-selective solvent to the distillation column, drawing a vapor sample from the distillation column, condensing the vapor sample, and analyzing at least a portion of the condensed vapor sample.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Jason L. Noe, Ian Horn, Lars Sullivan, Bruce R. Beadle, Edward M. Casey, James W. Harris
  • Patent number: 8518219
    Abstract: Organic waste disposal technologies are disclosed herein. A multistage processing of sewage sludge into synthetic fuel and chemical products is carried out by means of a direct thermo-chemical liquefaction process. The process enables the minimization of coke formation by utilizing steam stripping in the processing of sewage sludge.
    Type: Grant
    Filed: January 1, 2009
    Date of Patent: August 27, 2013
    Assignee: Metal Tech Ltd.
    Inventors: Yefim Plopski, Alexander Rogov
  • Patent number: 8506766
    Abstract: A method for recovering acetic acid from an aqueous feed stream containing acetic acid and, in particular, a stream generated during terephthalic acid production includes feeding a water-rich feed stream to a liquid-liquid extraction column, which includes a guard bed near the top thereof for conversion of alcohol within the feed stream by reaction with acetic acid to the corresponding ester, and removing residual water from acetic acid in an azeotropic distillation column by feeding water-poor feed streams from the extraction column to the distillation column at a height at which the mixture has a similar water concentration. The liquid-liquid extraction column produces an extract of an extraction solvent and acetic acid which is sent to the azeotropic distillation column to separate residual water and acetic acid.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 13, 2013
    Assignee: AMT International Inc.
    Inventors: Kuang-Yeu Wu, Ji-Young Jang, Karl Tze-Tang Chuang
  • Patent number: 8382961
    Abstract: The invention disclosed is an apparatus and method for the recovery of acetic acid, azeotropic agent, extraction agent, re-usable water and other reaction products such as p-toluic acid, from an aqueous stream generated during a terephthalic acid production process, having superior energy efficiency and reduced water consumption.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: February 26, 2013
    Assignee: AMT International, Inc.
    Inventors: Ji-Young Jang, Kuang-Yeu Wu, Ming-Mou Yang
  • Patent number: 8231765
    Abstract: A method and a plant are disclosed for purifying lactams, particularly lactams obtained by cyclizing hydrolysis of aminonitrile. The purification of ?-caprolactam obtained by cyclizing hydrolysis of aminocapronitrile is described which includes eliminating the ammonia from the reaction medium of the hydrolysis, then recovering the lactam from the medium in purified form. The recovery is carried out by performing at least a distillation of the lactam in the presence of a base producing optionally a fronts fraction having compounds more volatile than the lactam, a fraction having the lactam to be recovered to the degree of desired purity and a distillation tails having the lactam and compounds less volatile than the lactam. The distillation tails are treated by various processes such as evaporation in thin layers to recover the major part of the caprolactam and recycling the latter in the purification process.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: July 31, 2012
    Assignee: Rhodia Polyamide Intermediates
    Inventors: Daniel Amoros, Philippe Leconte, Pierre Coqueret
  • Publication number: 20120168298
    Abstract: The invention relates to a method for reprocessing waste acid from methods for producing nitro-aromatics, in particular for producing dinitrotoluene (DNT) or trinitrotoluene (TNT), to recover concentrated and purified sulfuric acid and nitric acid, wherein in a first stage, the waste acid is separated in a stripping column countercurrently with water vapor from the bottom of the stripping column into at least one vapor phase, which contains nitric acid and possibly nitro-organics, and a pre-concentrated sulfuric acid, and the vapor phase and the pre-concentrated sulfuric acid are condensed and/or reprocessed in downstream method stages, wherein in the first stage of the method, in addition to the stripping, according to the invention the nitric acid contained in the stripping vapor is concentrated in the presence of additional concentrated sulfuric acid so that nitric acid in a highly concentrated form suitable for feeding back into the nitriding process is obtained directly in the first stage.
    Type: Application
    Filed: September 8, 2010
    Publication date: July 5, 2012
    Applicant: DE DIETRICH PROCESS SYSTEMS GMBH
    Inventors: Gottfried Dichtl, Harald Steeg
  • Patent number: 8207291
    Abstract: Process for devolatilization of a polymer of an aromatic alkylene, such as styrene and, in particular, an improved process using water as a stripping agent (i) in which the total amount of water to be disposed of can be reduced, (ii) which allows at least a portion of the water to be recycled as stripping agent, reducing make-up requirements for the stripping agent, and (iii) which allows at least a portion of the aromatic alkylene monomer in the water to be recycled to the polymerization process (via the devolatilization steps) rather than being disposed.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: June 26, 2012
    Assignee: Ineos Europe Limited
    Inventor: Jean-Marc Galewski
  • Publication number: 20120130142
    Abstract: One exemplary embodiment can be an extraction process. The extraction process can include extracting with a solvent degradable due to contact with oxygen, and automatically measuring the solvent to detect changes in the solvent color due to degradation.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Applicant: UOP, LLC
    Inventors: Bruce R. Beadle, Robert J.L. Noe, Edward M. Casey
  • Publication number: 20120010447
    Abstract: Recovery of ethanol from a crude ethanol product obtained from the hydrogenation of acetic acid and recovery of unreacted acetic acid from a weak acid stream. The unreacted acetic acid may be recovered as a dry acetic acid composition and may be directly or indirectly fed to the hydrogenation reactor.
    Type: Application
    Filed: April 26, 2011
    Publication date: January 12, 2012
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: R. Jay WARNER, Trinity HORTON, Radmila JEVTIC, Victor J. JOHNSTON, David LEE, Adam OROSCO, Lincoln SARAGER
  • Patent number: 8075741
    Abstract: In the water purification process, apparatus, and method, contaminated water vapor is exposed to liquid solvent, which causes a transfer of contaminants from the contaminated water vapor to the liquid solvent. In an advantageous embodiment, this latter step is followed by a second purification step where the decontaminated water in liquid phase is exposed to water vapor which causes a transfer of solvent remaining in the decontaminated water to the water vapor. The energy freed during the condensation of the vapor can advantageously be used for evaporation of the liquids, optionally by compressing the vapors prior to condensation thereof within heat exchangers.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: December 13, 2011
    Inventor: Daniel Blanchette
  • Publication number: 20110237831
    Abstract: Processes for making monoammonium succinate (MAS) and/or succinic acid (SA) from either a clarified diammonium succinate (DAS)-containing fermentation broth or a clarified MAS-containing fermentation broth include (a) distilling the broth to form an overhead that includes water and optionally ammonia and a liquid bottoms that includes MAS or SA; (b) cooling and/or evaporating the bottoms and optionally adding an antisolvent to the bottoms to attain a temperature and composition sufficient to cause the bottoms to produce a solid portion that contains MAS or SA in contact with a liquid portion; (c) separating the solid portion from the liquid portion; and (d) recovering the solid portion.
    Type: Application
    Filed: March 18, 2011
    Publication date: September 29, 2011
    Applicant: BioAmber S.A.S.
    Inventors: Olan S. Fruchey, Brian T. Keen, Brooke A. Albin, Nye A. Clinton, Dilum Dunuwila, Bernard D. Dombek
  • Patent number: 8021520
    Abstract: The invention relates to a device and method for preparing liquid from solid materials such as medicinal materials. It includes liquid and materials for preparing the liquid at the beginning and the end of the process. The device uses a steam generator, an intermediate switch valve and a material chamber, which are connected sequentially with pipes, and further includes an outlet pipe, which is at the bottom of the material chamber. The method involves the steps of: distillation and absorption; immersion; and repetition. The device and method for preparing liquid alternates the distillation and immersion steps, which reduces harmful substance in the prepared liquid that would otherwise occur by conventional methods. The method not only extracts soluble effective matter, but also reduces loss of volatile effective matter. Ultimately, the method makes the steps for preparing liquid simple and clear, and it can prepare liquid quantitatively, effectively and without pasty and shrinkable characteristics.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: September 20, 2011
    Assignee: Shenzhen Zofu Technology Co., Ltd
    Inventor: Linlin Yao
  • Patent number: 7988831
    Abstract: A method for purifying an aqueous potassium hydroxide solution having rich silicon impurities has been disclosed in the invention, which is particularly related to a method that utilizes a low-carbon alcohol (such as ethanol) for extracting said aqueous potassium hydroxide solution, and includes the steps of mixing a low-carbon alcohol with an aqueous potassium hydroxide solution having rich silicon impurities; allowing the resulting mixture therefrom to divide into an aqueous phase layer and a low-carbon alcohol phase layer that contains the aqueous potassium hydroxide solution with reduced silicon impurities, and subjecting the low-carbon alcohol phase layer to a separation process for removing the low-carbon alcohol, thereby resulting in an aqueous potassium hydroxide solution having reduced silicon impurities.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: August 2, 2011
    Assignee: Yeou Fa Chemical Co., Ltd.
    Inventors: Yung Hsiung Hsu, Sage Hsu
  • Publication number: 20110162953
    Abstract: A process for recovering butanol from a mixture comprising a water-immiscible organic extractant, water, butanol, and optionally a non-condensable gas, is provided. The butanol is selected from 1-butanol, isobutanol, and mixtures thereof. An overhead stream from a first distillation column is decanted into two liquid phases. The wet butanol phase is returned to the first distillation column as reflux. A bottom stream from the first distillation column is refined in a second distillation column to obtain a second overhead stream comprising butanol and a second bottoms stream comprising the extractant. The extractant comprises at least one solvent selected from the group consisting of C7 to C22 fatty alcohols, C7 to C22 fatty acids, esters of C7 to C22 fatty acids, C7 to C22 fatty aldehydes, and mixtures thereof.
    Type: Application
    Filed: July 13, 2010
    Publication date: July 7, 2011
    Applicant: Butamax Advanced Biofuels LLC
    Inventors: Yihui Tom Xu, William D. Parten
  • Publication number: 20110162954
    Abstract: A process for recovering butanol from a mixture comprising a water-immiscible organic extractant, water, butanol, and optionally a non-condensable gas, is provided. The butanol is selected from 1-butanol, isobutanol, and mixtures thereof. An overhead stream from a first distillation column is decanted into two liquid phases. The wet butanol phase is refined in a second distillation column; the aqueous phase is returned to the first distillation column. A portion of the wet butanol phase from the decanter is also returned to the first distillation column. The extractant comprises at least one solvent selected from the group consisting of C7 to C22 fatty alcohols, C7 to C22 fatty acids, esters of C7 to C22 fatty acids, C7 to C22 fatty aldehydes, and mixtures thereof.
    Type: Application
    Filed: July 13, 2010
    Publication date: July 7, 2011
    Applicant: Butamax™ Advanced Biofuels LLC
    Inventors: Yihui Tom Xu, William D. Parten
  • Patent number: 7935229
    Abstract: A process for extractively removing homogeneously dissolved catalysts from a reaction effluent of a hydrocyanation of unsaturated mononitriles to dinitriles with a hydrocarbon H, including performing the steps of a) concentrating the reaction effluent before step b) by distillation at pressures of from 0.1 to 5000 mbar and temperatures of from 10 to 150° C., b) adding a hydrocarbon H to the concentrated reaction effluent to obtain a stream I, and c) feeding stream I, without prior separation of the liquid phases, into an extraction apparatus and extracting it at a temperature T with the hydrocarbon H to obtain a stream II comprising the hydrocarbon H enriched with the catalyst and a stream III having a low catalyst content.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: May 3, 2011
    Assignee: BASF SE
    Inventors: Petra Deckert, Peter Bassler, Michael Bartsch, Gerd Haderlein, Hermann Luyken, Jens Scheidel, Peter Pfab, Tobias Aechtner, Wolfgang Siegel
  • Patent number: 7790001
    Abstract: This invention relates to a process for reducing the corrosion rate of iron-containing vessels within an ethylene glycol distillation system. The inventive process includes the addition of an additive component of sodium nitrite and sodium hypophosphite into such iron-containing vessels, to thereby react with iron of the inside walls and form a protective coating thereon. This process reduces the corrosion rate in iron-containing vessels of the apparatus, and reduces the catalytic effects of iron corrosion products within the system. Thus, not only is the on-stream time of the vessels extended, but also product quality is improved by reducing the aldehyde content of the final ethylene glycol product.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: September 7, 2010
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: Barry Billig, James Mann
  • Patent number: 7619126
    Abstract: A process for recovering crude 1,3-butadiene from a C4 fraction by extractive distillation using a selective solvent in a dividing wall column (TK) in which a dividing wall (T) is arranged in the longitudinal direction of the column to form a first subregion (A), a second subregion (B) and a lower common column region (C) and which is preceded by an extractive scrubbing column (K), wherein the operation of the dividing wall column (TK) is set by regulation of the energy input into the dividing wall column (TK) via a bottom vaporizer (V) and setting of the number of the theoretical plates in the lower common column region (C) so that a bottom stream (17) consisting of purified solvent is obtained from the dividing wall column (TK), is proposed.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: November 17, 2009
    Assignee: BASF Aktiengesellschaft
    Inventor: Bernd Heida
  • Patent number: 7402720
    Abstract: The present invention provides a process for removing methyl acetylene and/or propadiene from a propylene stream and/or a butylene stream by two step fractionation. Methyl acetylene and/or propadiene avoids the use of a hydrogenation reactor and makes the methyl acetylene and/or propadiene recoverable from the process.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: July 22, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Cor F. Van Egmond
  • Publication number: 20080083607
    Abstract: A process for extractively removing homogeneously dissolved catalysts from a reaction effluent of a hydrocyanation of unsaturated mononitriles to dinitriles, by extraction by means of a hydrocarbon H, which comprises a) adding a nonpolar aprotic liquid L to the reaction effluent to obtain a stream I, and b) extracting the stream I at a temperature T with the hydrocarbon H to obtain a stream II comprising the hydrocarbon H enriched with the catalyst and a stream III having a low catalyst content.
    Type: Application
    Filed: October 12, 2005
    Publication date: April 10, 2008
    Applicant: BASF AKTIENGESELLSCHAFT
    Inventors: Petra Deckert, Peter Bassler, Michael Bartsch, Gerd Haderlein, Hermann Luyken, Jens Scheidel, Peter Pfab, Tobias Aechtner, Wolfgang Siegel
  • Patent number: 7241365
    Abstract: The invention relates to an apparatus and a process for the preparation of anhydrous or substantially anhydrous formic acid. This apparatus is constructed partly or entirely of substantially zirconium-free materials. The extractant employed is a liquid of the general formula I where the radicals R1 and R2 are alkyl, cycloalkyl, aryl or aralkyl groups, or R1 and R2 jointly, together with the N atom, form a heterocyclic 5- or 6-membered ring, and only one of the radicals is an aryl group, and where R3 is hydrogen or a C1–C4-alkyl group. The apparatus has a synthesis reactor (6), a hydrolysis reactor (1), three distillation devices (2,4,5) and an extraction device (3).
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: July 10, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Heinz Auer, Bernd Bessling, Hans Hammer, Hans Hasse, Friedrich Sauer, Maximilian Vicari, Gerhard Wagner, Till Adrian
  • Patent number: 7226527
    Abstract: A process for recovering crude 1,3-butadiene from a C4 fraction by extractive distillation using a selective solvent in a dividing wall column (TK) in which a dividing wall (T) is arranged in the longitudinal direction of the column to form a first subregion (A), a second subregion (B) and a lower common column region (C) and which is preceded by an extractive scrubbing column (K) is proposed.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: June 5, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerd Bohner, Klaus Kindler, Melanie Pahl, Gerd Kaibel
  • Patent number: 7074434
    Abstract: Process for the separation of a mixture comprising at least one hydrofluoroalkane and hydrogen fluoride, according to which a hydrofluoroalkane/hydrogen fluoride mixture is reacted with at least one chlorinated or chlorofluorinated precursor of the hydrofluoroalkane. Process for the preparation of a hydrofluoroalkane comprising such a separation, in combination with a catalytic reaction stage. Azeotropic compositions.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: July 11, 2006
    Assignee: Solvay (Societe Anonyme)
    Inventors: Alain Lambert, Vincent Wilmet
  • Patent number: 7041199
    Abstract: A process and a device for the catalytic hydrolysis of a carboxylate, e.g., methyl acetate, ethyl acetate, i- or n-propyl acetate, i- or n-butyl acetate, allyl acetate and methyl formate, into the corresponding carboxylic acid and alcohol, by a combination of a pre-reactor and a reactive distillation column are disclosed. By the combination of a pre-reactor and a reactor distillation column, the conversion ratio can be substantially improved. The device can compensate for fluctuations in the supply quantity or in the composition of the feed flow. The product composition can also be controlled in a wide range.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: May 9, 2006
    Assignees: Sulzer Chemtech AG, Wacker Chemie GmbH
    Inventors: Peter Moritz, Franz Ramgraber, Claudia von Scala, Harald Michl
  • Patent number: 6986833
    Abstract: An amine-containing mixture containing one or more amines, water, low-boilers and optionally high-boilers is fractionated by a process having the steps (iii) and (iv) and optionally the steps (i), (ii) and (v): (i) a (first) low-boiler fraction is separated off from the amine-containing mixture by distillation, (ii) a (first) high-boiler fraction is separated off from the amine-containing mixture by distillation, (iii) the amine-containing mixture is extracted with sodium hydroxide solution, producing an aqueous, sodium-hydroxide-containing first phase and an aqueous-organic, amine-, (further) low-boiler- and possibly (further) high-boiler-containing second phase, (iv) the aqueous-organic second phase, is distilled, producing essentially anhydrous amine as bottom-phase take off or sidestream takeoff in the stripping part of the distillation column, an amine/water azeotrop as sidestream takeoff in the enrichment part of the column and a (further) low-boiler fraction as overhead takeoff, and recycling the amin
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: January 17, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Wölfert, Heinz Rütter, Stefan Rittinger, Mark Wehinger, Aurelie Alemany, Willi Schmidt
  • Patent number: 6913674
    Abstract: A mixture containing one or more amines, water, low-boilers and high-boilers, is fractioned in a process wherein (i) low-boilers are separated from the mixture by distillation, (ii) high-boilers are separated from the mixture by distillation, (iii) the mixture is extracted with a sodium hydroxide solution to form an aqueous, sodium-hydroxide-containing first phase and an aqueous-organic, amine-containing second phase, and (iv) the aqueous-organic second phase is distilled to form an amine/water azeotrop and an essentially anhydrous amine, and the amine/water azeotrop is recycled to the extraction step (iii).
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: July 5, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Wölfert, Heinz Rütter, Stefan Rittinger, Mark Wehinger, Aurelie Alemany, Willi Schmidt
  • Patent number: 6838104
    Abstract: This invention relates to processes for the production of tocotrienol compounds from biological sources such as palm oil, cereals, grains, and grain oils. The tocotrienol products are recovered in high yields. These tocotrienols are useful as pharmaceuticals, in foodstuffs and as dietary supplements. These compositions are hypocholesterolemic, antioxidizing, antithrombotic, antiatherogenic, antiinflammatory and immunoregulatory in nature. Tocotrienols are known to lower the levels of low density lipoproteins in the bloodstream.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: January 4, 2005
    Assignee: Archer Daniels Midland Company
    Inventor: Lewis Jacobs
  • Patent number: 6821396
    Abstract: A mixture containing mixture one or more amines, water, low-boilers and high-boilers, is fractioned in a process wherein (i) low-boilers are separated from the mixture by distillation, (ii) high-boilers are separated from the mixture by distillation, (iii) the mixture is extracted with a sodium hydroxide solution to form an aqueous, sodium-hydroxide-containing first phase and an aqueous-organic, amine-containing second phase, and (iv) the aqueous-organic second phase is distilled to form an amine/water azeotrope and an essentially anhydrous amine, and the amine/water azeotrope is recycled to the extraction step (iii).
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: November 23, 2004
    Assignee: BASF Aktiengesellscahft
    Inventors: Andreas Wolfert, Heinz Rütter, Stefan Rittinger, Mark Wehinger, Aurelie Alemany, Willi Schmidt
  • Publication number: 20040200717
    Abstract: This invention relates to a process for the purification of phenols in a feedstock containing phenols and neutral oils and/or tar bases. The process includes liquid-liquid extraction of feedstock using a solvent and a counter-solvent, and separating the resulting solvent and counter-solvent layers. Phenols are then recovered from the separated solvent layer, and counter-solvent is recovered form the counter-solvent layer. The process also includes at least one of the following additions steps i) subjecting the separated solvent layer to distillation at atmospheric pressure; ii) subjecting the separated solvent layer to distillation, recovering an organic phase from the overheads product of the distillation step and recycling it to the liquid-liquid extraction step; and iii) recovering solvent from the counter-solvent layer.
    Type: Application
    Filed: March 26, 2004
    Publication date: October 14, 2004
    Inventors: Grant James Lund, Edward John Coogan, Wilhelmina Jansen
  • Publication number: 20040065538
    Abstract: A process for recovering crude 1,3-butadiene from a C4 fraction by extractive distillation using a selective solvent in a dividing wall column (TK) in which a dividing wall (T) is arranged in the longitudinal direction of the column to form a first subregion (A), a second subregion (B) and a lower common column region (C) and which is preceded by an extractive scrubbing column (K) is proposed.
    Type: Application
    Filed: August 8, 2003
    Publication date: April 8, 2004
    Inventors: Gerd Bohner, Klaus Kindler, Melanie Pahl, Gerd Kaibel
  • Patent number: 6706898
    Abstract: The invention relates to method for separating tocopherol from a first tocopherol admixture by heating the first tocopherol admixture composed of at least one tocopherol, a fatty acid, and an esterifying compound to esterify the fatty acid to produce a second tocopherol admixture composed of the tocopherol, the esterified fatty acid, and the unesterified fatty acid; distilling the second tocopherol admixture with the esterified fatty acid to remove the unesterified fatty acid from the second tocopherol admixture to produce a third tocopherol admixture composed of the tocopherol, with substantially removed unesterified fatty acid; distilling the third tocopherol admixture for a sufficient time and temperature to substantially remove the tocopherol from the third tocopherol admixture to produce a fourth tocopherol admixture composed of the removed tocopherol and a non-tocol component; and extracting the tocopherol from the fourth tocopherol admixture with an extraction solvent composed of a polar, organic solve
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: March 16, 2004
    Assignee: Archer-Daniels-Midland Company
    Inventor: Charles E. Sumner, Jr.
  • Patent number: 6679975
    Abstract: The present invention aims to isolate the azeotropes formed in a distillation column (B1) by methanol, propane and butane. The azeotropes are then liquefied in heat exchanger (E2) and mixed in contactor (M1) with water in order to dissolve the methanol in water. The mixture is then fed into a decantation tank (D2) to separate the aqueous phase from the liquid hydrocarbon phase. Finally, an aqueous phase containing methanol is discharged and the methanol-depleted hydrocarbon phase is recycled to distillation column (B1) as reflux.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: January 20, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Géraldine Laborie, Fabrice Lecomte, Annick Pucci
  • Publication number: 20030221948
    Abstract: A process is described for the recovery of phenol and biphenols from their homogeneous mixtures containing benzene, sulfolane and water, which is based on the use of an alkaline solution and benzene for the separation of biphenols from sulfolane, after removing the benzene, H2O and phenol contained in the reaction effluent.
    Type: Application
    Filed: May 21, 2003
    Publication date: December 4, 2003
    Applicant: POLIMERI EUROPA S.p.A.
    Inventors: Rossella Bortolo, Lino Carnelli, Daniele Moscotti, Daniele Bianchi
  • Publication number: 20030150705
    Abstract: A method of recovering acrylic acid from a mixture comprising acrylic acid, water and acetic acid is disclosed, which includes:
    Type: Application
    Filed: December 30, 2002
    Publication date: August 14, 2003
    Inventors: Sanjeev D. Deshpande, Tao Wang, Olan Stanley Fruchey, Roger L. Roundy, Nathan K. Powell, Rafael G. Morales, Joseph E. Goins
  • Patent number: H2194
    Abstract: This invention relates to a process for the purification of phenols in a feedstock containing phenols and neutral oils and/or tar bases. The process includes liquid-liquid extraction of feedstock using a solvent and a counter-solvent, and separating the resulting solvent and counter-solvent layers. Phenols are then recovered from the separated solvent layer, and counter-solvent is recovered form the counter-solvent layer. The process also includes at least one of the following additions steps i) subjecting the separated solvent layer to distillation at atmospheric pressure; ii) subjecting the separated solvent layer to distillation, recovering an organic phase from the overheads product of the distillation step and recycling it to the liquid-liquid extraction step; and iii) recovering solvent from the counter-solvent layer.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: July 3, 2007
    Assignee: Merisol (RSA) (Proprietary) Limited
    Inventors: Grant James Lund, Edward John Coogan, Wilhelmina Jansen