Contacting Coating As It Forms With Solid Member Or Material Other Than Electrode Patents (Class 205/93)
  • Patent number: 11980709
    Abstract: A fat harvesting systems and related methods of harvesting and reinjecting fat that provides a medical professional with multiple technique options. Harvested fat can be subjected to a variety of pre-reinjection preparation steps within a single, self contained reservoir such that the potential for contaminating the harvested fat is avoided. The fat harvesting system can be completely self-contained kit requiring no additional external systems or alternatively, can utilize available surgical suite systems, for example, vacuum to successfully harvest, prepare and reinject fat cells. The fat harvesting system can size harvested fat cells so as to be especially desirable for different injection locations in the body. The fat harvesting system is a single use, disposable system that requires no sterilization equipment and recovered and sized fat cells are maintained in a sanitary environment so as to avoid contamination that could result in having to discard recovered fat cells.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: May 14, 2024
    Assignee: Chopra Gryskiewicz, LLC
    Inventors: Karan Chopra, Joseph M. Gryskiewicz, Richard A. Thompson, Reed O. Saunders, Evan M. Leingang, Thomas A. Tedham, Mohamed A. Mohamed, Jacob T. Wilson, Brett J. Herdegen, Jason N. Scherer, Landon Hove Dinger, Justin A. Barbot
  • Patent number: 9840786
    Abstract: A film deposition device (1A) of a metal film includes: a solid electrolyte membrane (13) that allows metal ions to be contained; a positive electrode (11) made of a porous body; a power supply part (14) that applies a voltage between the positive electrode and a base material; and a contact pressurization part (20) that comes into contact with the positive electrode (11) and uniformly pressurizes a film deposition region of a surface of the base material by the solid electrolyte membrane (13) via the positive electrode (11). The positive electrode (11) made of the porous body is capable of transmitting a solution containing the metal ions such that the metal ions are supplied to the solid electrolyte membrane. The power supply part (14) applies a voltage between the positive electrode and the base material so that the metal film made of the metal is deposited.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: December 12, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Sato, Hiroshi Yanagimoto, Motoki Hiraoka
  • Patent number: 9362440
    Abstract: Techniques for electrodeposition of thin film solar panels are provided. In one aspect, an electrodeposition apparatus is provided. The electrodeposition apparatus includes at least one electroplating cell; and a conveyor for moving panels over the electroplating cell, wherein the conveyor comprises at least one metal belted track over the electroplating cell surrounding a plurality of metal rollers. The electroplating cell can include an anode at a bottom of the electroplating cell; and a plurality of paddles at a top of the electroplating cell. A baffle may be located in between the anode and the paddles. An electroplating process is also provided.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: June 7, 2016
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Lubomyr T. Romankiw
  • Patent number: 8968839
    Abstract: There is provided a method for producing a surface-treated metallic material, by use of which a metallic material having a stable and excellent sliding characteristic can be produced with a low environmental load without covering the metallic material surface with an oxide film. The method for producing a surface-treated metallic material includes immersing an anode and a cathode in an electrolyte solution, placing a metallic material used as a material to be treated above the surface of the electrolyte solution, and applying a voltage between the anode and the cathode to treat the metallic material surface, the voltage being equal to or higher than a voltage for causing a complete plasma state.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: March 3, 2015
    Assignee: JFE Steel Corporation
    Inventors: Masayasu Nagoshi, Kaoru Sato, Seiichi Watanabe, Souki Yoshida
  • Publication number: 20140224662
    Abstract: A solid electrolyte is formed by blending a coating chemical with metal ions and fatty acid. Filling molds and drying the material in the molds forms the solid electrolyte. The solid electrolyte is mounted on an electrode and attached to a handle. The solid electrolyte is moved over a surface of a substrate with the handle. DC current is passed between the electrode and substrate and ions are transferred to the wetted substrate from the solid electrolyte.
    Type: Application
    Filed: January 14, 2013
    Publication date: August 14, 2014
    Applicant: OCEANIT LABORATORIES, INC.
    Inventor: Oceanit Laboratories, Inc.
  • Patent number: 8512542
    Abstract: A method for the electrochemical coating of a substrate uses brush plating. This is to take place with an electrolyte in that particles are dispersed, which are embedded into the developing layer. It is proposed to add the particles to the carrier for the electrolyte by way of a separate conduit system. The electrolyte is added by way of a conduit system. In this way it is achieved that an agglomeration of the particles in the electrolyte can be prevented because only a short time passes between when the particles are fed and the layer is formed. A device for electrochemical coating has two conduit systems provided for this purpose.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: August 20, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Frank Heinrichsdorff, Jens Dahl Jensen, Hans-Richard Kretschmer, Daniel Reznik, Arno Steckenborn
  • Patent number: 8197659
    Abstract: A method for manufacturing a multilayer printed circuit board including providing a core substrate having a penetrating-hole, forming an electroless plated film on a surface of the substrate and an inner wall surface of the penetrating-hole, electrolytically plating the substrate while moving with respect to the surface of the substrate an insulating member in contact with the surface of the substrate such that an electrolytic plated film is formed on the electroless plated film, an opening space inside the penetrating-hole is filled with an electrolytic material, and a through-hole conductor structure is formed in the penetrating-hole, forming an etching resist having an opening pattern on the electrolytic plated film, and removing an exposed pattern of the electrolytic plated film exposed by the opening pattern and a pattern of the electroless plated film under the exposed pattern such that a conductor circuit is formed on the surface of the substrate.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: June 12, 2012
    Assignee: IBIDEN Co., Ltd.
    Inventors: Toru Nakai, Satoru Kawai, Hiroshi Niwa, Yoshiyuki Iwata
  • Publication number: 20110226626
    Abstract: A substrate treating device may include a plating treatment portion configured to perform a plating process of a substrate, a wet treatment portion configured to perform a wet treating process of the substrate, the wet treatment portion being under the plating treatment portion, and a substrate support portion configured to support the substrate so that a plating surface of the substrate faces upward, the substrate support portion being further configured to move the substrate between the plating treatment portion and the wet treatment portion.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 22, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ju-il Choi, Uihyoung Lee, Jae-hyun Phee, Jeong-Woo Park
  • Patent number: 7897027
    Abstract: A plating method includes providing an article in a plating bath, covering a surface of the article with an insulating member in the plating bath, and electrolytically plating the article while moving one of the insulating member and the article relative to each other.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: March 1, 2011
    Assignee: IBIDEN Co., Ltd.
    Inventors: Toru Nakai, Satoru Kawai, Hiroshi Niwa, Yoshiyuki Iwata
  • Publication number: 20100193364
    Abstract: In some embodiments, a workpiece-surface-influencing device preferentially contacts the top surface of the workpiece, to chemically modify the surface at desired field areas of the workpiece without affecting the surfaces of cavities or recesses in the field areas. The device includes a substance which is chemically reactive with material forming the workpiece surface. The substance can be in the form of a thin film or coating which contacts the surface of the workpiece to chemically modify that surface. The workpiece-surface-influencing device can be in the form of a solid state applicator such as a roller or a semi-permeable membrane. In some other embodiments, the cavities are filled with material that prevents surface modification of the cavity surfaces while allowing modification of the field areas, or which encourages surface modification of the cavity surfaces while preventing modification of the field areas. The modified surface facilitates selective deposition of materials on the workpiece.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 5, 2010
    Applicant: IPGRIP, LLC
    Inventor: Vladislav Vasilev
  • Patent number: 7754061
    Abstract: A plating apparatus and method for deposition of a conductive material on a semiconductor wafer having surface portions and cavity portions. A differential in an adsorbed concentration of an additive, including accelerators or suppressors, between a surface portion and a cavity portion of a wafer surface is established in a chamber. A mask or sweeper may be used to establish the differential. After establishing the differential in the chamber, the conductive material is electrodeposited to form a conductive layer on the surface in another chamber.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: July 13, 2010
    Assignee: Novellus Systems, Inc.
    Inventor: Bulent M. Basol
  • Patent number: 7731833
    Abstract: The present invention relates to methods and apparatus for plating a conductive material on a workpiece surface in a highly desirable manner. Using a workpiece-surface-influencing device, such as a mask or sweeper, that preferentially contacts the top surface of the workpiece, relative movement between the workpiece and the workpiece-surface-influencing device is established so that an additive in the electrolyte solution disposed on the workpiece and which is adsorbed onto the top surface is removed or otherwise its amount or concentration changed with respect to the additive on the cavity surface of the workpiece. Plating of the conductive material can place prior to, during and after usage of the workpiece-surface-influencing device, particularly after the workpiece surface influencing device no longer contacts any portion of the top surface of the workpiece, to achieve desirable semiconductor structures.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 8, 2010
    Assignee: Novellus Systems, Inc.
    Inventor: Bulent M. Basol
  • Publication number: 20100084276
    Abstract: The present invention provides a device having at least one constriction that is sized to permit translocation of only a single copy of the molecule. The device has a pair of spaced apart sensing electrodes that border the constriction, which may be a nanopore. The first electrode is connected to a first affinity element and the second electrode is connected to a second affinity element. The first and second affinity elements are configured to temporarily form hydrogen bonds with first and second portions of the target molecule as the latter passes through the constriction.
    Type: Application
    Filed: April 7, 2008
    Publication date: April 8, 2010
    Inventor: Stuart Lindsay
  • Patent number: 7608538
    Abstract: The present invention is related to a method for forming vertical conductive structures by electroplating. Specifically, a template structure is first formed, which includes a substrate, a discrete metal contact pad located on the substrate surface, an inter-level dielectric (ILD) layer over both the discrete metal contact pad and the substrate, and a metal via structure extending through the ILD layer onto the discrete metal contact pad. Next, a vertical via is formed in the template structure, which extends through the ILD layer onto the discrete metal contact pad. A vertical conductive structure is then formed in the vertical via by electroplating, which is conducted by applying an electroplating current to the discrete metal contact pad through the metal via structure. Preferably, the template structure comprises multiple discrete metal contact pads, multiple metal via structures, and multiple vertical vias for formation of multiple vertical conductive structures.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: October 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Qiang Huang, John P. Hummel, Lubomyr T. Romankiw, Mary B. Rothwell
  • Patent number: 7575664
    Abstract: A cathode potential is applied to a conductive layer formed on a substrate having a depression pattern. A plating solution in electrical contact with an anode is supplied to the conductive layer to form a plating film on the conductive layer. At this time, the plating solution is supplied by causing an impregnated member containing the plating solution to face the conductive layer. Since the plating solution stays in the depression, a larger amount of plating solution is supplied than on the upper surface of the substrate, and the plating rate of the plating film in the depression increases. Consequently, the plating film can be preferentially formed in the depression such as a groove or hole.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: August 18, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuo Matsuda, Hisashi Kaneko, Katsuya Okumura
  • Patent number: 7553400
    Abstract: A plating method is capable of mechanically and electrochemically preferentially depositing a plated film in fine interconnect recesses such as trenches and via holes, and depositing the plated film to a flatter surface. The plating method including: disposing a substrate having fine interconnect recesses such that a conductive layer faces an anode; disposing a porous member between the substrate and the anode; filling a plating solution between the substrate and the anode; and repeating a process of holding the conductive layer and the porous member in contact with each other and moving the conductive layer and the porous member relatively to each other, a process of passing an electric current between the conductive layer and the anode while keeping the conductive layer still with respect to the porous member, and a process of stopping the supply of the electric current between the conductive layer and the anode.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: June 30, 2009
    Assignees: Ebara Corporation, International Business Machines Corporation (IBM)
    Inventors: Mizuki Nagai, Hiroyuki Kanda, Keiichi Kurashina, Satoru Yamamoto, Ryoichi Kimizuka, Hariklia Deligianni, Brett Baker, Keith Kwietniak, Panayotis Andricacos, Phillipe Vereecken
  • Patent number: 7491308
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: February 17, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Patent number: 7435323
    Abstract: An apparatus which can control thickness uniformity during deposition of conductive material from an electrolyte onto a surface of a semiconductor substrate is provided. The apparatus has an anode which can be contacted by the electrolyte during deposition of the conductive material, a cathode assembly including a carrier adapted to carry the substrate for movement during deposition, and a conductive element permitting electrolyte flow therethrough. A mask lies over the conductive element and has openings permitting electrolyte flow. The openings define active regions of the conductive element by which a rate of conductive material deposition onto the surface can be varied. A power source can provide a potential between the anode and the cathode assembly so as to produce the deposition. A deposition process is also disclosed, and uniform electroetching of conductive material on the semiconductor substrate surface can additionally be performed.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: October 14, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M. Basol, Paul Lindquist
  • Publication number: 20080217182
    Abstract: This invention provides processes for selectively electroplating metal layers into recessed topographic features on the surface of a conductive substrate. The processes are useful for fabricating metal circuit patterns, for example for creating copper interconnects between integrated circuit elements embedded in a thin layer of dielectric material on the surface of a semiconductor wafer.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 11, 2008
    Applicant: E. I. DUPONT DE NEMOURS AND COMPANY
    Inventor: HONGLI DAI
  • Patent number: 7422677
    Abstract: This invention provides a membrane-mediated electropolishing process for polishing and/or planarizing metal work pieces. The work piece is wetted with a low-conductivity fluid. The wetted work piece is contacted with a first side of a charge-selective ion-conducting membrane, wherein the second side contacts a conductive electrolyte solution in electrical contact with a cathode. Current flow between the cathode and the work piece electropolishes metal from the work piece. This process can be used for both pure metals and alloys, and provides several significant advantages over conventional electropolishing processes. This invention also provides an apparatus useful in the membrane-mediated electropolishing process.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: September 9, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Stephen Mazur, Charles E. Jackson, Jr.
  • Patent number: 7404886
    Abstract: The present invention relates to methods for plating a conductive material on a substrate surface in a highly desirable manner. The invention removes at least one additive adsorbed on the top portion of the workpiece more than at least one additive disposed on a cavity portion, thereby allowing plating of the conductive material take place before the additive fully re-adsorbs onto the top portion and causing greater plating of the cavity portion relative to the top portion.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: July 29, 2008
    Assignee: Novellus Systems, Inc.
    Inventor: Bulent Basol
  • Patent number: 7378004
    Abstract: An apparatus capable of assisting in controlling an electrolyte flow and an electric field distribution used for processing a substrate is provided. It includes a rigid member having a top surface of a predetermined shape and a bottom surface. The rigid member contains a plurality of channels, each forming a passage from the top surface to the bottom surface, and each allowing the electrolyte and electric field flow therethrough. A pad is attached to the rigid member via a fastener. The pad also allows for electrolyte and electric field flow therethrough to the substrate.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: May 27, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Cyprian Uzoh, Bulent Basol, Homayoun Talieh
  • Patent number: 7341649
    Abstract: The present invention deposits a conductive material from an electrolyte solution to a predetermined area of a wafer. The steps that are used when making this application include applying the conductive material to the predetermined area of the wafer using an electrolyte solution disposed on a surface of the wafer, when the wafer is disposed between a cathode and an anode, and preventing accumulation of the conductive material to areas other than the predetermine area by mechanically polishing the other areas while the conductive material is being applied.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: March 11, 2008
    Assignee: Novellus Systems, Inc.
    Inventor: Homayoun Talieh
  • Patent number: 7335288
    Abstract: Methods for electrodeposition of copper on a noble metal layer of a work piece are provided. An exemplary method includes exposing the noble metal layer to an electrodeposition composition. The electrodeposition composition comprises a copper salt, a suppressor, an accelerator and an electrolyte. The electrodeposition of copper on a surface of the noble metal layer is initiated by application of a predetermined current density to the work piece. The electrodeposition of copper is terminated upon the occurrence of a predetermined event.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: February 26, 2008
    Assignee: Novellus Systems, Inc.
    Inventor: Vishwas V. Hardikar
  • Patent number: 7323095
    Abstract: A method and apparatus is provided for depositing and planarizing a material layer on a substrate. In one embodiment, an apparatus is provided which includes a partial enclosure, a permeable disc, a diffuser plate and optionally an anode. A substrate carrier is positionable above the partial enclosure and is adapted to move a substrate into and out of contact or close proximity with the permeable disc. The partial enclosure and the substrate carrier are rotatable to provide relative motion between a substrate and the permeable disc. In another aspect, a method is provided in which a substrate is positioned in a partial enclosure having an electrolyte therein at a first distance from a permeable disc. A current is optionally applied to the surface of the substrate and a first thickness is deposited on the substrate. Next, the substrate is positioned closer to the permeable disc. During the deposition, the partial enclosure and the substrate are rotated relative one another.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: January 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Yung Hsu, Liang-Yuh Chen, Ratson Morad, Daniel A. Carl, Sasson Somekh
  • Patent number: 7204924
    Abstract: The present invention provides a method for forming a conductive film with uniform properties on a wafer surface that has features or cavities. During the process, the workpiece is rotated and laterally moved while an electrodeposition solution is delivered onto the wafer surface at a predetermined flow rate, and a potential difference is applied between the workpiece surface and the electrode. The workpiece is rotated about an axis at predetermined revolutions per minute so that an edge region of the workpiece has a first predetermined linear velocity due to the rotation. The workpiece has a second predetermined linear velocity due to the lateral motion. The second predetermined velocity may be larger than the first predetermined velocity. Further, the wafer may not be rotated.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: April 17, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M. Basol, Homayoun Talieh
  • Patent number: 7105082
    Abstract: A composition for electrodeposition of a metal on a work piece, which electrodeposition is conducted at an electrodeposition temperature, is provided. The composition comprises a metal salt, a polymer suppressor having a cloud point, an accelerator and an electrolyte. If the cloud point is greater than the electrodeposition temperature, an anion is also present in an amount sufficient to lower the cloud point of the polymer suppressor to a temperature approximately no greater than the electrodeposition temperature.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: September 12, 2006
    Assignee: Novellus Systems, Inc.
    Inventor: Vishwas Hardikar
  • Patent number: 7097755
    Abstract: The present invention provides an apparatus for electrochemical mechanical processing of a surface of a workpiece by utilizing a process solution. The apparatus of the present invention includes an electrode touching the process solution, a belt workpiece surface influencing device extended between a supply spool and a receiving spool. During the process, the surface of the workpiece is placed in proximity of the workpiece surface influencing device and the process solution is flowed through the process section and onto the surface while a potential difference is applied between the electrode and the surface of the workpiece.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: August 29, 2006
    Assignee: ASM Nutool, Inc.
    Inventors: Bulent M. Basol, Halit N. Yakupoglu, Cyprian E. Uzoh, Homayoun Talieh
  • Patent number: 7045043
    Abstract: The present invention relates to a method of reducing a band mark on an electroplating steel sheet, which can also reduce plating defects and damages to the materials caused by the differences in the physical characteristics of composition materials of a conductor roll used during electroplating Zn or Ni onto a steel sheet. In other words, the present invention comprises ceramic coating portions of circular bands, placed respectively in a thin strip at the both edge regions of the metal band position at the central portion of a conductor roll. In this manner, the present invention has the effects of reducing a band mark on a plating steel sheet, and also suppressing the generation of static electricity by eliminating the level difference between the conductive material (metal band portion) and the non-conductive material (rubber section). The present invention is also cabaple extending the life of a conductor roll by enhancing the wear and corrosion resistances thereof.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: May 16, 2006
    Assignee: Pohang Iron and Steel Co., Ltd.
    Inventors: Hyung-Jun Kim, Shi-Yeob Lee
  • Patent number: 7025861
    Abstract: Embodiments of the invention generally provide a substrate processing system and method. The substrate processing system generally includes a fluid basin configured to contain a plating solution therein, an anode assembly positioned in a lower portion of the fluid basin, a separation membrane positioned across the fluid basin above the anode assembly, a diffusion member positioned across the fluid basin above the separation membrane, and a plating membrane positioned across the fluid basin above the diffusion member.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: April 11, 2006
    Assignee: Applied Materials
    Inventors: Nicolay Kovarsky, Michael Yang, Dmitry Lubomirsky
  • Patent number: 6969308
    Abstract: A polishing device is hermetically accommodated in a chamber containing an atmosphere having a composition different from the ambient air, so that the atmosphere around the polishing device is altered into the composition different from the ambient air, and voltage is applied between a wafer and a polishing pad to polish the wafer with an electrolytic effect. The polishing device has the atmosphere containing extremely less oxygen, preventing a surface of the wafer from oxidation and thereby providing a constant polishing rate.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: November 29, 2005
    Assignee: Tokyo Seimitsu Co., Ltd.
    Inventors: Toshiro Doi, Takashi Fujita
  • Patent number: 6932896
    Abstract: Systems and methods to remove or lessen the size of metal particles that have formed on, and to limit the rate at which metal particles form or grow on, workpiece surface influencing devices used during electrodeposition are presented. According to an exemplary method, the workpiece surface influencing device is occasionally placed in contact with a conditioning substrate coated with an inert material, and the bias applied to the electrodeposition system is reversed. According to another exemplary method, the workpiece surface influencing device is conditioned using mechanical contact members, such as brushes, and conditioning of the workpiece surface influencing device occurs, for example, through physical brushing of the workpiece surface influencing device with the brushes. According to a further exemplary method, the workpiece surface influencing device is rotated in different direction during electrodeposition.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: August 23, 2005
    Assignee: Nutool, Inc.
    Inventors: Bulent M. Basol, Cyprian Uzoh, Homayoun Talieh
  • Patent number: 6913681
    Abstract: A cathode potential is applied to a conductive layer formed on a substrate having a depression pattern. A plating solution in electrical contact with an anode is supplied to the conductive layer to form a plating film on the conductive layer. At this time, the plating solution is supplied by causing an impregnated member containing the plating solution to face the conductive layer. Since the plating solution stays in the depression, a larger amount of plating solution is supplied than on the upper surface of the substrate, and the plating rate of the plating film in the depression increases. Consequently, the plating film can be preferentially formed in the depression such as a groove or hole.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: July 5, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuo Matsuda, Hisashi Kaneko, Katsuya Okumura
  • Patent number: 6893549
    Abstract: A cleaning apparatus for an ECMD anode pad including a vacuum head which applies vacuum pressure to the surface of the anode pad between ECMD operations in order to remove particles precipitated onto the surface of the anode pad and prevent or minimize inadvertent scratching or peeling of a wafer supported by the pad during the process. The particles are dislodged from the anode pad and removed from the ECMD system by flow of electrolyte solution into the vacuum head. The electrolyte solution is typically filtered before returning to the electrolyte tank for ultimate redistribution to the ECMD system.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: May 17, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Shih-Wei Chou, Minghsng Tsai
  • Patent number: 6800186
    Abstract: A continuous strip is electrochemically processed in an electrolytic processing bath using either a thin flexible or resilient dielectric wiping blade or an open web, plastic mesh to wipe bubbles of gas from the surface, sever dendritic material, if such is present, and to remove a surface layer of partially depleted electrolytic solution, replacing with fresh solution and to stabilize strip portions extending between support rolls. The resilient dielectric wiper blade is preferably used with perforated anodes which allow fresh electrolytic solution to flow into the space between the anodes and the strip surface after being expelled by passage of the strip past the wiping blade. The wiping blades may also be angularly oriented with respect to the strip to increase the wiping effectiveness.
    Type: Grant
    Filed: July 7, 1998
    Date of Patent: October 5, 2004
    Inventors: James L. Forand, Harold M. Keeney, Erik S. Van Anglen
  • Patent number: 6773570
    Abstract: A method and apparatus are described for performing both electroplating of a metal layer and planarization of the layer on a substrate. Electroplating and electroetching of metal (such as copper) are performed in a repeated sequence, followed by chemical-mechanical polishing. An electroplating solution, electroetching solution, and a non-abrasive slurry are dispensed on a polishing pad in the respective process steps. The substrate is held against the pad with a variable force in accordance with the process, so that the spacing between substrate and pad may be less during electroplating than during electroetching.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: August 10, 2004
    Assignee: International Business Machines Corporation
    Inventors: Laertis Economikos, Hariklia Deligianni, John M. Cotte, Henry J. Grabarz, Bomy Chen
  • Publication number: 20040129569
    Abstract: The present invention provides an electrolytic processing apparatus which, while eliminating a CMP processing entirely or reducing a load on a CMP processing to the least possible extent, can process and flatten a conductive material formed in the surface of a substrate, or can remove (clean) extraneous matter adhering to the surface of a workpiece such as a substrate. The present invention includes an electrode section including a plurality of electrode members disposed in parallel, each electrode member comprising an electrode and an ion exchanger covering the surface of the electrode, a holder for holding a workpiece, which is capable of bringing the workpiece close to or into contact with the ion exchanger of the electrode member, and a power source to be connected to the electrode of each electrode member of the electrode section. The ion exchanger of the electrode member comprises an ion exchanger having an excellent surface smoothness and an ion exchanger having a large ion exchange capacity.
    Type: Application
    Filed: September 25, 2003
    Publication date: July 8, 2004
    Inventors: Osamu Nabeya, Masayuki Kumekawa, Hozumi Yasuda, Itsuki Kobata, Takeshi Ilzumi, Nobuyuki Takada, Koichi Fukaya, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Tsukuru Suzuki, Kaoru Yamada, Yuji Makita
  • Patent number: 6736952
    Abstract: An electrochemical planarization apparatus for planarizing a metallized surface on a workpiece includes a polishing pad and a platen. The platen is formed of conductive material, is disposed proximate to the polishing pad and is configured to have a negative charge during at least a portion of a planarization process. At least one electrical conductor is positioned within the platen. The electrical conductor has a first end connected to a power source. A workpiece carrier is configured to carry a workpiece and press the workpiece against the polishing pad. The power source applies a positive charge to the workpiece via the electrical conductor so that an electric potential difference between the metallized surface of the workpiece and the platen is created to remove at least a portion of the metallized surface from the workpiece.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: May 18, 2004
    Assignee: SpeedFam-IPEC Corporation
    Inventors: Ismail Emesh, Saket Chadda, Nikolay N. Korovin, Brian L. Mueller
  • Publication number: 20040065549
    Abstract: A cleaning apparatus for an ECMD anode pad including a vacuum head which applies vacuum pressure to the surface of the anode pad between ECMD operations in order to remove particles precipitated onto the surface of the anode pad and prevent or minimize inadvertent scratching or peeling of a wafer supported by the pad during the process. The particles are dislodged from the anode pad and removed from the ECMD system by flow of electrolyte solution into the vacuum head. The electrolyte solution is typically filtered before returning to the electrolyte tank for ultimate redistribution to the ECMD system.
    Type: Application
    Filed: October 7, 2002
    Publication date: April 8, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Wei Chou, Minghsing Tsai
  • Patent number: 6676822
    Abstract: The present invention deposits a conductive material from an electrolyte solution to a predetermined area of a wafer. The steps that are used when making this application include applying the conductive material to the predetermined area of the wafer using an electrolyte solution disposed on a surface of the wafer, when the wafer is disposed between a cathode and an anode, and preventing accumulation of the conductive material to areas other than the predetermined area by mechanically polishing the other areas while the conductive material is being applied.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: January 13, 2004
    Assignee: Nutool, Inc.
    Inventor: Homayoun Talieh
  • Publication number: 20030217927
    Abstract: A top layer comprises a flexible support and a plurality of hard elements anchored in a binder over the flexible support, and a method of forming the same is provided. In one embodiment, certain ones of the hard elements have a contact surface adapted to contact the conductive surface, with the binder being disposed below the contact surface of each of the certain ones of the hard elements. In another embodiment, the top layer comprises a flexible support, a plurality of hard elements are anchored in a binder over the flexible support such that certain ones of the hard elements have a top surface and the binder is disposed below the top surface of each of the certain ones of the hard elements, and a hard material coating is disposed over the plurality of hard elements and the binder, thereby creating a contact surface of the hard material coating at locations corresponding to the top surface of the certain ones of the hard elements.
    Type: Application
    Filed: February 14, 2003
    Publication date: November 27, 2003
    Inventors: Bulent M. Basol, George Xinsheng Guo
  • Publication number: 20030155246
    Abstract: The present invention relates to a method for producing surface-structured substrates, wherein a predetermined defined surface structuring is transferred to the surface of a substrate by activating the substrate surface using at least one fine probe that interacts with the substrate surface, and material of a liquid, solid, or molten salt electrolyte is electrochemically deposited in a selective manner on the regions of the substrate surface that are activated thereby. The invention also relates to a device for surface structuring of substrates.
    Type: Application
    Filed: January 22, 2003
    Publication date: August 21, 2003
    Inventors: Thomas Schimmel, Christian Obermair, Matthias Muller, Christian Klinke
  • Publication number: 20030127336
    Abstract: Various embodiments of the invention present techniques for forming structures (e.g. HARMS-type structures) via an electrochemical extrusion (ELEX™) process. Preferred embodiments perform the extrusion processes via depositions through anodeless conformable contact masks that are initially pressed against substrates that are then progressively pulled away or separated as the depositions thicken. A pattern of deposition may vary over the course of deposition by including more complex relative motion between the mask and the substrate elements. Such complex motion may include rotational components or translational motions having components that are not parallel to an axis of separation. More complex structures may be formed by combining the ELEX™ process with the selective deposition, blanket deposition, planarization, etching, and multi-layer operations of EFAB™.
    Type: Application
    Filed: October 15, 2002
    Publication date: July 10, 2003
    Applicant: MEMGen Corporation
    Inventors: Adam L. Cohen, Gang Zhang, Qui T. Le, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20030121791
    Abstract: Various embodiments of the invention present techniques for forming structures (e.g. HARMS-type structures) via an electrochemical extrusion (ELEX™) process. Preferred embodiments perform the extrusion processes via depositions through anodeless conformable contact masks that are initially pressed against substrates that are then progressively pulled away or separated as the depositions thicken. A pattern of deposition may vary over the course of deposition by including more complex relative motion between the mask and the substrate elements. Such complex motion may include rotational components or translational motions having components that are not parallel to an axis of separation. More complex structures may be formed by combining the ELEX™ process with the selective deposition, blanket deposition, planarization, etching, and multi-layer operations of EFAB™.
    Type: Application
    Filed: October 15, 2002
    Publication date: July 3, 2003
    Applicant: University of Southern California
    Inventor: Adam L. Cohen
  • Publication number: 20030070930
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Application
    Filed: November 22, 2002
    Publication date: April 17, 2003
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Publication number: 20020139682
    Abstract: Systems and methods to remove or lessen the size of metal particles that have formed on, and to limit the rate at which metal particles form or grow on, workpiece surface influencing devices used during electrodeposition are presented. According to an exemplary method, the workpiece surface influencing device is occasionally placed in contact with a conditioning substrate coated with an inert material, and the bias applied to the electrodeposition system is reversed. According to another exemplary method, the workpiece surface influencing device is conditioned using mechanical contact members, such as brushes, and conditioning of the workpiece surface influencing device occurs, for example, through physical brushing of the workpiece surface influencing device with the brushes. According to a further exemplary method, the workpiece surface influencing device is rotated in different direction during electrodeposition.
    Type: Application
    Filed: October 17, 2001
    Publication date: October 3, 2002
    Inventors: Bulent M. Basol, Cyprian Uzoh, Homayoun Talieh
  • Publication number: 20020074230
    Abstract: The present invention relates to methods and apparatus for plating a conductive material on a substrate surface in a highly desirable manner. The invention removes at least one additive adsorbed on the top portion of the workpiece more than at least one additive disposed on a cavity portion, thereby allowing plating of the conductive material take place before the additive fully re-adsorbs onto the top portion and causing greater plating of the cavity portion relative to the top portion.
    Type: Application
    Filed: December 18, 2000
    Publication date: June 20, 2002
    Inventor: Bulent Basol
  • Patent number: 6398936
    Abstract: A process for plating copper on particulate graphite comprises cleaning and drying the graphite particles; wetting the graphite particles with an aqueous solution of cupric sulfate and glacial acetic acid; dripping the graphite particles as wetted with a layer of the aqueous solution on a rotating metal (including zinc, aluminum and iron) disk to conduct a displacement reaction to plate copper, as displaced by the metal existing in situ on the metal disk, on each graphite particle; and washing the graphite particles as plated by copper with water and then drying the copper-plated graphite particles.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: June 4, 2002
    Inventors: Ching-Bin Lin, Jen-Fin Lin
  • Patent number: 6395163
    Abstract: A process for electrolytically processing a flat perforated item, comprising the steps of: moving the item in a transport direction to a treatment station where the item is contacted with an electrolyte, continuously mechanically wiping, in the presence of one of a cathodic item and an anode, and an anodic item and a cathode, a surface of the item using means for reducing the thickness of a diffusion layer depleted in metal ions adjacent the surface of the item, which means include a wiping roller extending perpendicular to the transport direction over the entire width of the item and in contact with the item; and moving the electrolyte in a direction substantially perpendicular to a plane of the item so as to direct the electrolyte only toward the perforations in the item and to convey the electrolyte through the in the item under pressure.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: May 28, 2002
    Assignee: Atotech Deutschland GmbH
    Inventors: Reinhard Schneider, Rolf Schroeder, Klaus Wolfer, Thomas Kosikowski
  • Patent number: 6364247
    Abstract: The present invention provides a pneumatic flotation device for use in a continuous web processing system for continuously processing paper and other flexible materials and a method of making the pneumatic flotation device. The pneumatic floatation device replaces the rolls, idlers and air bars currently used in continuous processing systems. The pneumatic floatation device includes a microporous sheet attached to a suitable pneumatic support structure. The microporous sheet has a smooth exterior layer with regularly spaced pores that enables air to pass therethrough. The interior layer of the sheet is an open structure metal fabric that enables air to move freely along two axes of the sheet parallel to the exterior layer while in contact with the pneumatic support structure. In one preferred embodiment, the pneumatic support structure includes a rigid tube and an airflow device in fluid communication with the microporous sheet.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: April 2, 2002
    Inventor: David T. Polkinghorne