Using Molten Additive, E.g., Heat Carrier, Etc. Patents (Class 208/404)
  • Patent number: 9315744
    Abstract: The instant invention discloses a method for the improvement of flakes recovery from hydrocarbon processing units and in particular slurry reactors as well as slurry flakes obtained thereof.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: April 19, 2016
    Assignee: TOTAL RAFFINAGE MARKETING
    Inventors: Katell Le Lannic-Dromard, Sylvain Prout, Gloria Vendrell
  • Patent number: 8864984
    Abstract: This invention relates to compositions comprising fluid hydrocarbon products, and to methods for making fluid hydrocarbon products via catalytic pyrolysis. Some embodiments relate to methods for the production of specific aromatic products (e.g., benzene, toluene, naphthalene, xylene, etc.) via catalytic pyrolysis. Some such methods involve the use of a composition comprising a mixture of a solid hydrocarbonaceous material and a heterogeneous pyrolytic catalyst component. The methods described herein may also involve the use of specialized catalysts. For example, in some cases, zeolite catalysts may be used.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: October 21, 2014
    Assignee: University of Massachusetts
    Inventors: George W. Huber, Yu-Ting Cheng, Torren Carlson, Tushar Vispute, Jungho Jae, Geoff Tompsett
  • Publication number: 20140275668
    Abstract: The thermochemical conversion of biomass material to one or more reaction products includes generating thermal energy with at least one heat source, providing a volume of feedstock, providing a volume of supercritical fluid, transferring a portion of the generated thermal energy to the volume of supercritical fluid, transferring at least a portion of the generated thermal energy from the volume of supercritical fluid to the volume of feedstock, and performing a thermal decomposition process on the volume of feedstock with the thermal energy transferred from the volume of supercritical fluid to the volume of the feedstock in order to form at least one reaction product.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Searete LLC
    Inventors: Joshua C. Walter, Manuel Garcia-Perez
  • Patent number: 8506658
    Abstract: A process and system for separating a light fraction, a bio-distillate fraction, and a heavy fraction from a bio-oil, and for producing a renewable distillate including at least in part the bio-distillate fraction and a stabilizing additive, is provided. The process comprises separating bio-oil into light, bio-distillate, and heavy fractions based on their boiling points. At least a portion of the bio-distillate fraction and a stabilizing additive are blended with a petroleum-derived-diesel-range stream, without any prior hydrotreatment, to thereby provide a renewable distillate composition.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: August 13, 2013
    Assignee: KiOR, Inc.
    Inventors: Maria Magdalena Ramirez Corredores, Jennifer Sorrells, Changan Zhang
  • Patent number: 8425766
    Abstract: Aspects of the present invention relate to methods, systems, and compositions for preparing a solid biomass for fast pyrolysis. The method includes contacting the solid biomass with an inorganic material present in an effective amount for increasing fast pyrolysis yield of an organic liquid product (e.g., bio-oil). In various embodiments, the inorganic material is selected from the group consisting of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum hydroxide, ammonium hydroxide, magnesium hydroxide, potassium hydroxide, and combinations thereof.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: April 23, 2013
    Assignee: KiOR, Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Patent number: 8303916
    Abstract: A reactor system for the transformation of solid, liquid, gaseous, and related hydrocarbon feedstocks into high-purity, high-pressure gas streams capable of withstanding high temperatures and high pressures. The system comprises a plurality of reactor housings and a plurality of molten-metal bath vessels within the housings, the bath vessels in fluid communication with each other via conduits, with communication facilitated by gravity and temperature/pressure differentials.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: November 6, 2012
    Assignee: Oscura, Inc.
    Inventors: Michael C. Collins, Robert D. Bach
  • Patent number: 8287723
    Abstract: This invention relates to biomass pyrolysis through the use of a hot liquid refinery feedstock as a heat transfer medium, preferably a vacuum gas oil feedstock.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: October 16, 2012
    Assignee: Phillips 66 Company
    Inventors: Andreas Jess, Dominic Kaufmann, Daren E. Daugaard
  • Patent number: 8288600
    Abstract: A process for producing fuel from biomass is disclosed herein. The process includes torrefying biomass material at a temperature between 80° C. to 400° C. to form particulated biomass having a mean average particle size between 1 ?m and 1000 ?m. The particulated biomass is mixed with a liquid hydrocarbon to form a suspension, wherein the suspension includes from 1 weight percent to 40 weight percent particulated biomass. The suspension is fed into a unit selected from the group consisting of a pyrolysis reactor, a fluid catalytic cracking unit, a delayed coker, a fluid coker, a hydroprocessing unit, and a hydrocracking unit, and then at least a portion of the particulated biomass of the suspension is converted into fuel.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: October 16, 2012
    Assignee: KiOR Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires, Steve Yanik, Paul O'Connor, Jacobus Cornelius Rasser
  • Patent number: 8277643
    Abstract: This invention relates to compositions and methods for fluid hydrocarbon product, and more specifically, to compositions and methods for fluid hydrocarbon product via catalytic pyrolysis. Some embodiments relate to methods for the production of specific aromatic products (e.g., benzene, toluene, naphthalene, xylene, etc.) via catalytic pyrolysis. Some such methods may involve the use of a composition comprising a mixture of a solid hydrocarbonaceous material and a heterogeneous pyrolytic catalyst component. In some embodiments, the mixture may be pyrolyzed at high temperatures (e.g., between 500° C. and 1000° C.). The pyrolysis may be conducted for an amount of time at least partially sufficient for production of discrete, identifiable biofuel compounds. Some embodiments involve heating the mixture of catalyst and hydrocarbonaceous material at high rates (e.g., from about 50° C. per second to about 1000° C. per second). The methods described herein may also involve the use of specialized catalysts.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: October 2, 2012
    Assignee: University of Massachusetts
    Inventors: George W. Huber, Yu-Ting Cheng, Torren Carlson, Tushar Vispute, Jungho Jae, Geoff Tompsett
  • Patent number: 8236173
    Abstract: Aspects of the present invention relate to methods, systems, and compositions for preparing a solid biomass for fast pyrolysis. The method includes contacting the solid biomass with an inorganic material present in an effective amount for increasing fast pyrolysis yield of an organic liquid product (e.g., bio-oil). In various embodiments, the inorganic material is selected from the group consisting of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum hydroxide, ammonium hydroxide, magnesium hydroxide, potassium hydroxide, and combinations thereof.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: August 7, 2012
    Assignee: KiOR, Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Patent number: 8063258
    Abstract: A process for producing fuel from biomass is disclosed herein. The process includes torrefying biomass material at a temperature between 80° C. and 300° C. to form particulated biomass having a mean average particle size from about 1 ?m to about 1000 ?m. The particulated biomass is mixed with a liquid to form a suspension, wherein the liquid comprises bio-oil, wherein the suspension includes between 1 weight percent to 40 weight percent particulated biomass. The suspension is fed into a hydropyrolysis reactor; and at least a portion of the particulated biomass of the suspension is converted into fuel.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: November 22, 2011
    Assignee: Kior Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Patent number: 7645362
    Abstract: Methods for pretreating and improving coking coal quality for producing blast-furnace coke by: (a) rapid-heating the coal charge in a fluidized-bed to a temperature range between not lower than 300° C. and not higher than the temperature at which the coal charge begins to soften, at a rate of 30 to 103 ° C./min., (b) classifying the rapid-heated coal charge to fine- and coarse-size coal, and then (c-1) briquetting the fine-size coal or (c-2) rapid-heating the fine- and coarse-size coal individually in a pneumatic preheater to a temperature range between not lower than 300° C. and not higher than the temperature at which the coal charge begins to soften, at a rate of 103 to 105 ° C./min., and (d) forming the fine-size coal.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: January 12, 2010
    Assignee: The Japan Iron and Steel Federation
    Inventors: Kenji Kato, Yukihiro Kubota, Takashi Arima, Masaki Sasaki, Makoto Matsuura, Hiroki Nakai
  • Patent number: 6258988
    Abstract: A method is disclosed for reforming organics into shorter-chain unsaturated organic compounds. A molten metal bath is provided which can cause homolytic cleavage of an organic component of an organic-containing feed. The feed is directed into the molten metal bath at a rate which causes partial homolytic cleavage of an organic component of the feed. Conditions are established and maintained in the reactor to cause partial homolytic cleavage of the organic component to produce unsaturated organic compounds, as products of the homolytic cleavage, which are discharged from the molten metal bath.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: July 10, 2001
    Assignee: Quantum Catalytics, L.L.C.
    Inventors: Christopher J. Nagel, Thomas P. Griffin, Thomas A. Kinney, Kevin A. Sparks
  • Patent number: 5458659
    Abstract: First, nitrogen oxides are reduced by firing coal in substoichiometric air conditions in a first stage oxidation unit of a combustor to reduce NO.sub.x from fuel bound nitrogen. Hydrated lime, Ca(OH).sub.2, is introduced into the first stage oxidation unit to produce calcium sulfide. The calcium sulfide becomes tied up in a slag eutectic which is removed prior to entry of the fuel gas to a second stage oxidation unit at the entrance of a furnace where additional preheated air is added to the fuel gas.
    Type: Grant
    Filed: October 20, 1993
    Date of Patent: October 17, 1995
    Assignee: Florida Power Corporation
    Inventor: Robert A. Ashworth
  • Patent number: 5085764
    Abstract: In a process for reducing the sulfur and ash contents of coal, coal is sequentially contacted with fused alkali metal caustic, wash water, and acid. Contacting the coal with the caustic produces water-soluble compounds. Sufficient wash water is used to reduce the temperature of the caustic treated coal and dissolve the bulk of the water-soluble compounds before the water-soluble compounds convert to water-insoluble compounds that precipitate on the caustic-treated coal. Caustic removed from the coal by the water is recovered as anhydrous caustic for again contacting coal.
    Type: Grant
    Filed: December 19, 1989
    Date of Patent: February 4, 1992
    Assignee: TRW Inc.
    Inventors: Robert A. Meyers, Walter D. Hart, Loren C. McClanathan
  • Patent number: 5061363
    Abstract: In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The depolymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on depolymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380.degree.-600.degree. C. and 70-280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: October 29, 1991
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Malvina Farcasiu, Charlene M. Smith
  • Patent number: 5059307
    Abstract: In a process for reducing the sulfur and ash contents of coal, coal is sequentially contacted with fused alkali metal caustic, water, carbonic acid, and a strong acid. Caustic removed from the coal by the water and the carbonic acid is recovered as anhydrous caustic for again contacting coal.
    Type: Grant
    Filed: October 11, 1989
    Date of Patent: October 22, 1991
    Assignees: TRW Inc.
    Inventors: Robert A. Meyers, Walter D. Hart, Leslie J. Van Nice, deceased, Leslie J. Van Nice, heir
  • Patent number: RE42832
    Abstract: A method is disclosed for reforming organics into shorter-chain unsaturated organic compounds. A molten metal bath is provided which can cause homolytic cleavage of an organic component of an organic-containing feed. The feed is directed into the molten metal bath at a rate which causes partial homolytic cleavage of an organic component of the feed. Conditions are established and maintained in the reactor to cause partial homolytic cleavage of the organic component to produce unsaturated organic compounds, as products of the homolytic cleavage, which are discharged from the molten metal bath.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: October 11, 2011
    Assignee: Quantum Catalytics, L.L.C.
    Inventors: Christopher J. Nagel, Thomas P. Griffin, Thomas A. Kinney, Kevin A. Sparks