Gaseous Getters Patents (Class 252/181.5)
  • Patent number: 9988261
    Abstract: A micromechanical device, in particular a sensor device, and a method for manufacturing a micromechanical device are provided. The micromechanical device has a housing, the housing including a first cavity, and the housing including a second cavity that is separate from the first cavity. The micromechanical device is configured in such a way that a predetermined first gas pressure prevails in the first cavity, and a predetermined second gas pressure which is reduced compared to the first gas pressure prevails in the second cavity. A heating element is situated in the area of the second cavity. The micromechanical device has a printed conductor, the heating element being heatable with the aid of the printed conductor.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: June 5, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Julian Gonska, Jochen Reinmuth, Kathrin Gutsche
  • Patent number: 7521864
    Abstract: An electron device such as a fluorescent display tube is provided, wherein a simple ring-less getter can be simply fixed and arranged with a large degree of freedom. The ring-less getter is securely fixed to the inner surface of the glass anode substrate using laser beams. The laser beam is irradiated onto the ring-less getter from outside the anode substrate. Thus, the laser beam passes through the anode substrate thus heating and melting the ring-less getter. The corresponding inner surface of the anode substrate is melted through the heating. In cooling, the portion where the ring-less getter and the anode substrate are in a molten state is solidified, so that the ring-less getter is bonded to the anode substrate. The ring-less getter is shaped arbitrarily through press-working a getter material.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: April 21, 2009
    Assignee: Futaba Corporation
    Inventors: Shogo Ishige, Yoshihisa Yonezawa, Yukio Ogawa
  • Publication number: 20090059531
    Abstract: The increase of temperature in heat sensitive devices during heat generating conditions is prevented through the absorption of heat, by providing a carbohydrate endotherm in an amount sufficient to effect the required heat absorption. The carbohydrate endotherm operates in an environment substantially devoid of potential oxidizing reactants. A scavenger may be employed in combination with the carbohydrate endotherm to remove or neutralize potential oxidizing reactants. Alternatively (or in addition), a fluoro-inert material may be employed in combination with the carbohydrate endotherm to effect a desired non-oxidizing environment. The carbohydrate endotherm may be used to provide thermal control and/or thermal protection in a variety of applications and environments. The carbohydrate endotherm may also be employed in combination with previously disclosed endotherm materials to achieve synergistic benefits therewith.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 5, 2009
    Applicant: HAYES & ASSOCIATES
    Inventor: Claude Hayes Wold
  • Publication number: 20080210901
    Abstract: Getter systems are provided having a phase being active in the sorption of gas inserted in the pores of a porous material. The porous material is, in turn, dispersed in a polymeric means that is permeable to the gas to be sorbed.
    Type: Application
    Filed: July 18, 2006
    Publication date: September 4, 2008
    Applicant: SAES GETTERS S.P. A.
    Inventors: Roberto Giannantonio, Chiara Vescovi, Lorena Cattaneo, Giorgio Longoni
  • Patent number: 6923625
    Abstract: A method for preventing contamination, oxidation and gas absorption of reactive materials, and articles formed thereby. The method generally entails depositing a first layer of a reactive material and a second layer of a substantially nonreactive material so that the second layer protects the first layer from a surrounding atmosphere. For example, the first and second layers may be deposited to form a film on a surface within a chamber that is desired to be maintained in a vacuum during use of the article. The second layer is sufficiently thin such that appropriately heating the first and second layers causes the reactive material of the first layer to become interdiffused with the nonreactive material of the second layer, to the extent that at least a portion of the reactive material is able to react and getter gases from the surrounding atmosphere.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: August 2, 2005
    Assignee: Integrated Sensing Systems, Inc.
    Inventor: Douglas Ray Sparks
  • Patent number: 6514430
    Abstract: Compositions containing getter material and getter devices for which gettering activity can be activated at applied temperatures that are lower than those temperatures required for activating the getter material alone are disclosed. In one aspect, a getter composition that includes a getter component and an activator component is provided. The getter component is selected from the group consisting of evaporable and non-evaporable getter materials. The activator component is effective to heat said getter material to a temperature greater than about 500° C. when said activator material is heated to a temperature of between about 280° C. and about 500° C. In some embodiments, the activator component is effective to bring the temperature of the getter material to greater than about 1,000° C. These materials can be used in devices and locations for which low applied activation temperatures are required.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: February 4, 2003
    Assignee: SAES Getters S.p.A.
    Inventors: Alessio Corazza, Claudio Boffito