Chip Mounted On Chip Patents (Class 257/777)
  • Patent number: 11996389
    Abstract: Embodiments of semiconductor devices and fabrication methods thereof are disclosed. In an example, a method for forming a semiconductor device is disclosed. First semiconductor structures are formed on a first wafer. At least one first semiconductor structure includes a programmable logic device, an array of SRAM cells, and a first bonding layer including first bonding contacts. Second semiconductor structures are formed on a second wafer. At least one second semiconductor structure includes an array of DRAM cells and a second bonding layer including second bonding contacts. The first wafer and the second wafer are bonded in a face-to-face manner, such that the at least one of the first semiconductor structures is bonded to the at least one of the second semiconductor structures. The first bonding contacts of the first semiconductor structure are in contact with the second bonding contacts of the second semiconductor structure at a bonding interface. The bonded first and second wafers are diced into dies.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: May 28, 2024
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Jun Liu, Weihua Cheng
  • Patent number: 11982853
    Abstract: An optoelectronic package and a method of manufacturing an optoelectronic package are provided. The optoelectronic package includes a carrier. The carrier includes a first region and a second region. The first region is configured to supply power to a processing unit disposed on the carrier. The second region is for accommodating at least one optoelectronic device electrically coupled to the processing unit.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: May 14, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Jr-Wei Lin, Mei-Ju Lu
  • Patent number: 11984440
    Abstract: Semiconductor devices and semiconductor device packages may include at least one first semiconductor die supported on a first side of a substrate. The at least one first semiconductor die may include a first active surface. A second semiconductor die may be supported on a second, opposite side of the substrate. The second semiconductor die may include a second active surface located on a side of the second semiconductor die facing the substrate. The second semiconductor die may be configured to have higher median power consumption than the at least one first semiconductor die during operation. An electronic system incorporating a semiconductor device package is disclosed, as are related methods.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: May 14, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Shams U. Arifeen, Xiaopeng Qu
  • Patent number: 11984432
    Abstract: A semiconductor chip stack module that includes a substrate, two first semiconductor chips supported by the substrate, and a second semiconductor chip stacked on both of the two first semiconductor chips. The second semiconductor chip is electrically connected to both of the two first semiconductor chips by a conductive paste configured between the second semiconductor chip and both of the two first semiconductor chips. As multiple standard chips are stacked in the power module, and their number as well as the connection methods (e.g. series or parallel) are flexible so that the user can choose which electric characteristic(s) to be increased in the power module with the stacked chips.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: May 14, 2024
    Assignee: Unity Power Technology Limited
    Inventor: Kuk Fong Yip
  • Patent number: 11984378
    Abstract: A semiconductor package structure includes an interposer substrate formed over a package substrate. The structure also includes a die disposed over the interposer substrate. The structure also includes a first heat spreader disposed over the package substrate. The structure also includes a second heat spreader disposed over the die and connected to the first heat spreader. The coefficient of thermal expansion (CTE) of the first heat spreader and the coefficient of thermal expansion of the second heat spreader are different.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Shen Yeh, Po-Yao Lin, Chin-Hua Wang, Yu-Sheng Lin, Shin-Puu Jeng
  • Patent number: 11978755
    Abstract: A semiconductor apparatus according to the present invention includes: a semiconductor component including a cell array and a plurality of wirings; and a semiconductor component including a plurality of pads connected to the semiconductor component including the cell array. A first row pad connected to a row wiring connected to a first cell and a second cell, a second row pad connected to a row wiring connected to a third cell and a fourth cell, and a column pad connected to a column wiring connected to the first cell and the third cell are arranged such that a straight line connecting the first row pad and the column pad crosses a straight line connecting the second row pad and the column pad.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: May 7, 2024
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Kohei Matsumoto, Hideo Kobayashi, Daisuke Yoshida
  • Patent number: 11973056
    Abstract: A method of making an assembly can include juxtaposing a top surface of a first electrically conductive element at a first surface of a first substrate with a top surface of a second electrically conductive element at a major surface of a second substrate. One of: the top surface of the first conductive element can be recessed below the first surface, or the top surface of the second conductive element can be recessed below the major surface. Electrically conductive nanoparticles can be disposed between the top surfaces of the first and second conductive elements. The conductive nanoparticles can have long dimensions smaller than 100 nanometers. The method can also include elevating a temperature at least at interfaces of the juxtaposed first and second conductive elements to a joining temperature at which the conductive nanoparticles can cause metallurgical joints to form between the juxtaposed first and second conductive elements.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: April 30, 2024
    Assignee: ADEIA SEMICONDUCTOR TECHNOLOGIES LLC
    Inventor: Cyprian Emeka Uzoh
  • Patent number: 11973060
    Abstract: A TSV of a first semiconductor die may extend from a semiconductor substrate of the first semiconductor die through at least one metallization layer of the die to connect to a metallization layer to supply power to the second semiconductor die. By extending the TSV, resistance may be reduced, allowing for enhanced power delivery to the second semiconductor die. Resistance may be further reduced by allowing for the TSV to connect to a thicker metallization layer than would otherwise be possible. Also, in some embodiments, the TSV may connect to a metallization layer that is suitable for supplying power to both semiconductor dies. The first semiconductor die may be a top die or a bottom die in a face-to-face arrangement. Disclosed concepts may be extended to any number of dies included in a die stack that includes the face-to-face arrangement.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: April 30, 2024
    Assignee: NVIDIA Corporation
    Inventors: Joseph Greco, Joseph Minacapelli
  • Patent number: 11968788
    Abstract: A method for manufacturing a fixing belt for a wearable device, includes providing a flexible circuit board including a first area, a second area, and a pad in the first area; disposing an insulating layer on the flexible circuit board, the insulating layer being disposed in the second area; forming an electric conductive portion in the insulating layer; disposing a first protective layer and a second protective layer on opposite surfaces of the flexible circuit board, the electric conductive portion being between the flexible circuit board and the first protective layer; mounting an electronic component on the pad. A portion of the fixing belt containing the second area is a plug-in area, and the plug-in area is configured to be engaged with a device body of the wearable device, the electric conductive portion is disposed in the plug-in area.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: April 23, 2024
    Assignees: Avary Holding (Shenzhen) Co., Limited., QING DING PRECISION ELECTRONICS (HUAIAN) CO., LTD, GARUDA TECHNOLOGY CO., LTD.
    Inventors: Yong-Quan Yang, Han-Pei Huang
  • Patent number: 11961776
    Abstract: A method of forming a semiconductor device is provided. The method includes providing a connector structure configured for carrying a signal and providing a semiconductor die. At least a portion of the connector structure and the semiconductor die are encapsulated with an encapsulant. The semiconductor die is interconnected with the connector structure by way of a conductive trace.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: April 16, 2024
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Scott M. Hayes
  • Patent number: 11961820
    Abstract: A method for producing a connection between component parts and a component made of component parts are disclosed. In an embodiment, a includes providing a first component part having a first exposed insulation layer and a second component part having a second exposed insulation layer, wherein each of the insulation layers has at least one opening, joining together the first and second component parts such that the opening of the first insulation layer and the opening of the second insulation layer overlap in top view, wherein an Au layer and a Sn layer are arranged one above the other in at least one of the openings and melting the Au layer and the Sn layer to form an AuSn alloy, wherein the AuSn alloy forms a through-via after cooling electrically conductively connecting the first component part to the second component part.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: April 16, 2024
    Assignee: OSRAM OLED GmbH
    Inventors: Simeon Katz, Mathias Wendt, Sophia Huppmann, Marcus Zenger, Jens Mueller
  • Patent number: 11961818
    Abstract: This patent application relates to methods and apparatus for temperature modification within a stack of microelectronic devices for mutual collective bonding of the microelectronic devices, and to related substrates and assemblies.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: April 16, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Andrew M. Bayless, Brandon P. Wirz
  • Patent number: 11961778
    Abstract: A semiconductor device package includes a substrate having a top planar surface and a first semiconductor die electrically connected to the top planar surface of the substrate. The first semiconductor die and substrate define a tunnel and a first molding compound encapsulates the first semiconductor die and fills the tunnel. A second molding compound that is separate and distinct from the first molding compound is mounted on a top surface of the first molding compound. The first molding, when in a flowable state, has a viscosity that is lower than a viscosity of the second molding compound when it is in a flowable state.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: April 16, 2024
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Shenghua Huang, Yangming Liu, Bo Yang, Ning Ye
  • Patent number: 11961796
    Abstract: A package comprises at least one first device die, and a redistribution line (RDL) structure having the at least one first device die bonded thereto. The RDL structure comprises a plurality of dielectric layers, and a plurality of RDLs formed through the plurality of dielectric layers. A trench is defined proximate to axial edges of the RDL structure through each of the plurality of dielectric layers. The trench prevents damage to portions of the RDL structure located axially inwards of the trench.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yueh-Ting Lin, Hua-Wei Tseng, Ming Shih Yeh, Der-Chyang Yeh
  • Patent number: 11955462
    Abstract: Embodiments are generally directed to package stacking using chip to wafer bonding. An embodiment of a device includes a first stacked layer including one or more semiconductor dies, components or both, the first stacked layer further including a first dielectric layer, the first stacked layer being thinned to a first thickness; and a second stacked layer of one or more semiconductor dies, components, or both, the second stacked layer further including a second dielectric layer, the second stacked layer being fabricated on the first stacked layer.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Georg Seidemann, Klaus Reingruber, Christian Geissler, Sven Albers, Andreas Wolter, Marc Dittes, Richard Patten
  • Patent number: 11955446
    Abstract: The present disclosure relates to a method for forming a semiconductor device structure. The method includes forming a first semiconductor die and forming a second semiconductor die. The first semiconductor die includes a first metal layer, a first conductive via over the first metal layer, and a first conductive polymer liner surrounding the first conductive via. The second semiconductor die includes a second metal layer, a second conductive via over the second metal layer, and a second conductive polymer liner surrounding the second conductive via. The method also includes forming a conductive structure electrically connecting the first metal layer and the second metal layer by bonding the second semiconductor die to the first semiconductor die. The conductive structure is formed by the first conductive via, the first conductive polymer liner, the second conductive via, and the second conductive polymer liner.
    Type: Grant
    Filed: November 23, 2022
    Date of Patent: April 9, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Yu-Han Hsueh
  • Patent number: 11948873
    Abstract: A semiconductor package including: a first substrate; a first semiconductor device on the first substrate; a first mold layer covering the first semiconductor device; a second substrate on the first mold layer; a support solder ball interposed between the first substrate and the second substrate, and electrically disconnected from the first substrate or the second substrate, wherein the support solder ball includes a core and is disposed near a first sidewall of the first semiconductor device; and a substrate connection solder ball disposed between the first sidewall of the first semiconductor device and the support solder ball to electrically connect the first substrate to the second substrate, wherein a top surface of the first semiconductor device has a first height from a top surface of the first substrate, and the core has a second height which is equal to or greater than the first height.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: April 2, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeonghyun Lee, Dongwook Kim, Hwan Pil Park, Jongbo Shim
  • Patent number: 11948892
    Abstract: A method for forming a package structure is provided. The method includes forming first conductive structures and a first semiconductor die on a same side of a redistribution structure. The method includes forming an interposer substrate over the redistribution structure, wherein the first semiconductor die is between the interposer substrate and the redistribution structure, and edges of the interposer substrate extend beyond edges of the first semiconductor die. The method includes forming a second semiconductor die on the redistribution structure, wherein the first semiconductor die and the second semiconductor die are disposed on opposite sides of the redistribution structure.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Hao Tsai, Meng-Liang Lin, Po-Yao Chuang, Techi Wong, Shin-Puu Jeng
  • Patent number: 11942459
    Abstract: A semiconductor device package includes a first substrate having an electrical circuit, semiconductor dies stacked one on top of the other, and bond wires electrically connected one to another. The bond wires electrically couple the semiconductor dies to one another and to the electrical circuit. There is a first bond wire having a first portion connected to a first semiconductor die, a second portion connected to a second semiconductor die, and an intermediate portion between the first portion and second portion. The semiconductor device package further includes a molding compound encapsulating the semiconductor dies, and the first and second portions of the first bond wire. The intermediate portion of the first bond wire is exposed along a top planar surface of the molding compound. The semiconductor device package may be used for coupling one or more other semiconductor device packages thereto via the exposed intermediate portion.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: March 26, 2024
    Assignee: Western Digital Technologies, Inc.
    Inventors: Hua Tan, Hope Chiu, Weiting Jiang, Elley Zhang, Cong Zhang, Simon Dong, Jerry Tang, Rosy Zhao
  • Patent number: 11935854
    Abstract: A method for forming a bonded semiconductor structure is disclosed. A first device wafer having a first bonding layer and a first bonding pad exposed from the first bonding layer and a second device wafer having a second bonding layer and a second bonding pad exposed from the second bonding layer are provided. Following, a portion of the first bonding pad is removed until a sidewall of the first bonding layer is exposed, and a portion of the second bonding layer is removed to expose a sidewall of the second bonding pad. The first device wafer and the second device wafer are then bonded to form a dielectric bonding interface between the first bonding layer and the second bonding layer and a conductive bonding interface between the first bonding pad and the second bonding pad. The conductive bonding interface and the dielectric bonding interface comprise a step-height.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Patent number: 11935872
    Abstract: A semiconductor device includes: a wiring board, a chip stack provided above the wiring board and including a first semiconductor chip; a second semiconductor chip provided between the wiring board and the first semiconductor chip; a first adhesive layer provided between the first semiconductor chip and the second semiconductor chip and on the second semiconductor chip; and a sealing insulation layer including a first part and a second part, the first part covering the chip stack, and the second part extending between the wiring board and the first semiconductor chip.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: March 19, 2024
    Assignee: Kioxia Corporation
    Inventor: Takahiro Mori
  • Patent number: 11937429
    Abstract: Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. A layer over the conductive levels includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus. In some embodiments the vertically-stacked conductive levels are wordline levels within a NAND memory array. Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. Vertically-stacked NAND memory cells are along the conductive levels within a memory array region. A staircase region is proximate the memory array region. The staircase region has electrical contacts in one-to-one correspondence with the conductive levels. A layer is over the memory array region and over the staircase region. The layer includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: March 19, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Fei Wang, Chet E. Carter, Ian Laboriante, John D. Hopkins, Kunal Shrotri, Ryan Meyer, Vinayak Shamanna, Kunal R. Parekh, Martin C. Roberts, Matthew Park
  • Patent number: 11935862
    Abstract: Three-dimensional (3D) memory devices and methods for forming the same are disclosed. In certain aspects, a 3D memory device includes a first semiconductor structure, a second semiconductor structure opposite to the first semiconductor structure, and an interface layer between the first semiconductor structure and the second semiconductor structure. The first semiconductor structure includes a memory stack having a plurality of interleaved stack conductive layers and stack dielectric layers. The second semiconductor structure includes a plurality of peripheral circuits electrically connected to the memory stack. The interface layer includes single crystalline silicon and a plurality of interconnects between the memory stack and the peripheral circuits.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: March 19, 2024
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventor: Kun Zhang
  • Patent number: 11929330
    Abstract: Embodiments include an electronic package with an embedded multi-interconnect bridge (EMIB) and methods of making such packages. Embodiments include a first layer, that is an organic material and a second layer disposed over the first layer. In an embodiment, a cavity is formed through the second layer to expose a first surface of the first layer. A bridge substrate is in the cavity and is supported by the first surface of the first layer. Embodiments include a first die over the second layer that is electrically coupled to a first contact on the bridge substrate, and a second die over the second layer that is electrically coupled to a second contact on the bridge substrate. In an embodiment the first die is electrically coupled to the second die by the bridge substrate.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: March 12, 2024
    Assignee: Intel Corporation
    Inventors: Kristof Darmawikarta, Hiroki Tanaka, Robert May, Sameer Paital, Bai Nie, Jesse Jones, Chung Kwang Christopher Tan
  • Patent number: 11923309
    Abstract: Disclosed are semiconductor packages and methods of fabricating the same. The semiconductor package includes a redistribution substrate including redistribution line patterns in a dielectric layer, and a semiconductor chip on the redistribution substrate. The semiconductor chip includes chip pads electrically connected to the redistribution line patterns. Each of the redistribution line patterns has a substantially planar top surface and a nonplanar bottom surface. Each of the redistribution line patterns includes a central portion and edge portions on opposite sides of the central portion. Each of the redistribution line patterns has a first thickness as a minimum thickness at the central portion and a second thickness as a maximum thickness at the edge portions.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: March 5, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyunsu Hwang, Junyun Kweon, Jumyong Park, Jin Ho An, Dongjoon Oh, Chungsun Lee, Ju-Il Choi
  • Patent number: 11923260
    Abstract: A semiconductor device has an electronic component assembly with a substrate and a plurality of electrical components disposed over the substrate. A conductive post is formed over the substrate. A molding compound sheet is disposed over the electrical component assembly. A carrier including a first electrical circuit pattern is disposed over the molding compound sheet. The carrier is pressed against the molding compound sheet to dispose a first encapsulant over and around the electrical component assembly and embed the first electrical circuit pattern in the first encapsulant. A shielding layer can be formed over the electrical components assembly. The carrier is removed to expose the first electrical circuit pattern. A second encapsulant is deposited over the first encapsulant and the first electrical circuit pattern. A second electrical circuit pattern is formed over the second encapsulant. A semiconductor package is disposed over the first electrical circuit pattern.
    Type: Grant
    Filed: January 16, 2023
    Date of Patent: March 5, 2024
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: JinHee Jung, ChangOh Kim
  • Patent number: 11916023
    Abstract: A package includes a package component, a device die over and bonded to the package component, a metal cap having a top portion over the device die, and a thermal interface material between and contacting the device die and the metal cap. The thermal interface material includes a first portion directly over an inner portion of the device die, and a second portion extending directly over a corner region of the device die. The first portion has a first thickness. The second portion has a second thickness greater than the first thickness.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Hui Huang, Da-Cyuan Yu, Kuan-Yu Huang, Pai Yuan Li, Hsiang-Fan Lee
  • Patent number: 11908825
    Abstract: A semiconductor package includes a lower semiconductor die and an upper semiconductor die which are stacked with an offset in a first direction, wherein the lower semiconductor die includes a plurality of lower pads arranged in a second direction, which is perpendicular to the first direction, and wherein the upper semiconductor die includes a plurality of upper pads arranged in the second direction. The semiconductor package also includes bent wires electrically connecting the lower pads of the lower semiconductor die with the upper pads of the upper semiconductor die in the first direction. The semiconductor package further includes vertical wires such that a vertical wire is disposed on any one of the lower pad and the upper pad for each pair of pads electrically connected by a bent wire.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: February 20, 2024
    Assignee: SK hynix Inc.
    Inventor: Jeong Hyun Park
  • Patent number: 11907079
    Abstract: A system for dynamically optimizing redundant backup of one or more data sets of a plurality of data sets from a client device to a tertiary storage is presented. The system includes a user input module, a parameter comparison module, a backup path selector, and a redundant backup module. The system is configured to dynamically switch between two backup paths including: (A) direct redundant backup of the data set from the client device to the tertiary storage, or (B) back up of the data set from the client device to a secondary storage and redundant backup of the data set from the secondary storage to the tertiary storage. A related method is also presented.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: February 20, 2024
    Assignee: Druva Inc.
    Inventors: Sandeep Ghadge, Sudeep Jathar
  • Patent number: 11901345
    Abstract: A semiconductor package may include: a substrate; a first sub-semiconductor package disposed over the substrate, the first sub-semiconductor package including a first buffer chip and a first memory chip; and a second memory chip disposed over the first sub-semiconductor package, wherein the first buffer chip and the first memory chip are connected to each other using a first redistribution line, and wherein the first buffer chip and the second memory chip are connected to each other using a second bonding wire.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: February 13, 2024
    Assignee: SK hynix Inc.
    Inventors: Jeong Hyun Park, Bok Kyu Choi
  • Patent number: 11901334
    Abstract: A semiconductor package includes a resin molded package substrate comprising a resin molded core, a plurality of metal vias in the resin molded core, a front-side RDL structure, and a back-side RDL structure. A bridge TSV interconnect component is embedded in the resin molded core. The bridge TSV interconnect component has a silicon substrate portion, an RDL structure integrally constructed on the silicon substrate portion, and TSVs in the silicon substrate portion. A first semiconductor die and a second semiconductor die are mounted on the front-side RDL structure. The first semiconductor die and the second semiconductor die are coplanar.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: February 13, 2024
    Assignee: Micron Technology, Inc.
    Inventor: Shing-Yih Shih
  • Patent number: 11901349
    Abstract: Embodiments of the present disclosure provide a semiconductor package. In one embodiment, the semiconductor package includes a first integrated circuit die having a first circuit design, and the first integrated circuit die comprises a first device layer and a first interconnect structure. The semiconductor package also includes a second integrated circuit die having a second circuit design different than the first circuit design, and the second integrated circuit die comprises a second device layer and a second interconnect structure having a first side in contact with the first device layer and a second side in direct contact with the first interconnect structure of the first integrated circuit die. The semiconductor package further includes a substrate having a first side bonded to the first interconnect structure, wherein the second integrated circuit die is surrounded by at least a portion of the substrate.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Han-Tang Hung, Shin-Yi Yang, Ming-Han Lee, Shau-Lin Shue
  • Patent number: 11894226
    Abstract: A fabrication method of a semiconductor device comprises the steps of: providing a substrate, which is divided into several chip areas; forming a protective layer on the substrate, the protective layer covers the scribe lines and the chip areas; exposing and developing the protective layer to form a plurality of grooves in the protective layer over the chip areas, and the depth of the grooves is smaller than the initial thickness of the protective layer.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: February 6, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Pingheng Wu
  • Patent number: 11894319
    Abstract: Embodiments include a wafer-on-wafer bonding where each wafer includes a seal ring structure around die areas defined in the wafer. Embodiments provide a further seal ring spanning the interface between the wafers. Embodiments may extend the existing seal rings of the wafers, provide an extended seal ring structure separate from the existing seal rings of the wafers, or combinations thereof.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Hsorng Shen, Kuan-Hsien Lee
  • Patent number: 11887887
    Abstract: An integrated circuit interconnect structure includes a first interconnect in a first metallization level and a first dielectric adjacent to at least a portion of the first interconnect, where the first dielectric having a first carbon content. The integrated circuit interconnect structure further includes a second interconnect in a second metallization level above the first metallization level. The second interconnect includes a lowermost surface in contact with at least a portion of an uppermost surface of the first interconnect. A second dielectric having a second carbon content is adjacent to at least a portion of the second interconnect and the first dielectric. The first carbon concentration increases with distance away from the lowermost surface of the second interconnect and the second carbon concentration increases with distance away from the uppermost surface of the first interconnect.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: January 30, 2024
    Assignee: Intel Corporation
    Inventors: Manish Chandhok, Ramanan Chebiam, Brennen Mueller, Colin Carver, Jeffery Bielefeld, Nafees Kabir, Richard Vreeland, William Brezinski
  • Patent number: 11881456
    Abstract: A semiconductor package includes; an interposer mounted on a package substrate, a first semiconductor device and a second semiconductor device mounted on the interposer, a molding member including an outer side wall portion covering an outer side surface of the first semiconductor device, and a lower portion covering at least a portion of an upper surface of the interposer, and a capping structure including an outer side wall portion covering the outer side wall portion of the molding member.
    Type: Grant
    Filed: November 26, 2021
    Date of Patent: January 23, 2024
    Inventor: Heonwoo Kim
  • Patent number: 11869854
    Abstract: A semiconductor structure in which the upper and lower semiconductor wafers are bonded by a hybrid bonding method is provided. The two semiconductor wafers each have discontinuous multiple metal traces or spiral coil-shaped metal traces. By hybrid bonding the two semiconductor wafers, multiple discontinuous metal traces are bonded together to form an inductance element with a continuous and non-intersecting path, or the two spiral coil-shaped metal traces are bonded together to form an inductance element. In this semiconductor structure, the inductance element formed by hybrid bonding has the advantage that the inductance value is easily adjusted.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: January 9, 2024
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chien-Ming Lai, Hui-Ling Chen, Zhi-Rui Sheng
  • Patent number: 11855011
    Abstract: Provided is a package structure and a method of forming the same. The package structure includes a semiconductor package, a stacked patch antenna structure, and a plurality of conductive connectors. The semiconductor package includes a die. The stacked patch antenna structure is disposed on the semiconductor package, and separated from the semiconductor package by an air cavity. The plurality of conductive connectors is disposed in the air cavity between the semiconductor package and the stacked patch antenna structure to connect the semiconductor package and the stacked patch antenna structure.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Yi Hsu, Kai-Chiang Wu, Yen-Ping Wang
  • Patent number: 11854935
    Abstract: Embodiments of the present disclosure may generally relate to systems, apparatuses, techniques, and/or processes directed to packages that include stacked dies that use thermal conductivity features including thermally conductive through silicon vias (TSVs) filled with thermally conductive material located in passive areas of a first die to route heat from a first die away from a second die that is coupled with the first die. In embodiments, the first die may be referred to as a base die. Embodiments may include thermal blocks in the form of dummy dies that include TSVs at least partially filled with thermal energy conducting material such as copper, solder, or other alloy.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: December 26, 2023
    Assignee: Intel Corporation
    Inventors: Weston Bertrand, Kyle Arrington, Shankar Devasenathipathy, Aaron McCann, Nicholas Neal, Zhimin Wan
  • Patent number: 11855056
    Abstract: Systems and methods are provided for a system in a package (SiP) connectivity using one or more ultra short reach (USR) chiplets. The USR chiplet can receive/transmit data at a lower throughput and transmit/receive that data at a higher throughput over ultra short distances. The USR chiplet can be connected to a main integrated circuit (IC) using a high density interconnect or integrated with the main IC in a mold material. The USR chip can enable the main IC to transfer data over a substrate at a higher speed using a fewer number of traces.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: December 26, 2023
    Assignee: Eliyan Corporation
    Inventor: Mohsen F. Rad
  • Patent number: 11848275
    Abstract: An integrated shield electronic component package includes a substrate having an upper surface, a lower surface, and sides extending between the upper surface and the lower surface. An electronic component is mounted to the upper surface of the substrate. An integrated shield is mounted to the upper surface of the substrate and includes a side shielding portion directly adjacent to and covering the sides of the substrate. The integrated shield covers and provides an electromagnetic interference (EMI) shield for the electronic component, the upper surface and sides of substrate. Further, the integrated shield is integrated within the integrated shield electronic package. Thus, separate operations of mounting an electronic component package and then mounting a shield are avoided thus simplifying manufacturing and reducing overall assembly costs.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: December 19, 2023
    Assignee: AMKOR TECHNOLOGY SINGAPORE HOLDING PTE. LTD.
    Inventors: Paul Mescher, Danny Brady
  • Patent number: 11848299
    Abstract: Systems and methods for a semiconductor device having an edge-notched substrate are provided. The device generally includes a substrate having a front side, a backside having substrate contacts, and an inward notch at an edge of the substrate. The device includes a die having an active side attached to the front side of the substrate and positioned such that bond pads of the die are accessible from the backside of the substrate through the inward notch. The device includes wire bonds routed through the inward notch and electrically coupling the bond pads of the die to the substrate contacts. The device may further include a second die having an active side attached to the backside of the first die and positioned laterally offset from the first die such that the second bond pads are accessible by wire bonds around the edge of the first die and through the inward notch.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: December 19, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Owen R. Fay, Madison E. Wale, James L Voelz, Dylan W. Southern
  • Patent number: 11848311
    Abstract: A microelectronic package may be fabricated having a microelectronic die stack attached to a microelectronic substrate and at least one microelectronic device, which is separate from the microelectronic die stack, attached to the microelectronic substrate within the footprint of one of the microelectronic dice within the microelectronic die stack. In one embodiment, the microelectronic die stack may have a plurality of stacked microelectronic dice, wherein one microelectronic die of the plurality of microelectronic dice has a footprint greater than the other microelectronic die of the plurality of microelectronic dice, and wherein the at least one microelectronic device is attached to the one microelectronic die of the plurality of microelectronic dice having the greater footprint.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: December 19, 2023
    Assignee: Intel Corporation
    Inventor: Bilal Khalaf
  • Patent number: 11842946
    Abstract: Packaged semiconductor devices including high-thermal conductivity molding compounds and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a first redistribution structure; a first die over and electrically coupled to the first redistribution structure; a first through via over and electrically coupled to the first redistribution structure; an insulation layer extending along the first redistribution structure, the first die, and the first through via; and an encapsulant over the insulation layer, the encapsulant surrounding portions of the first through via and the first die, the encapsulant including conductive fillers at a concentration ranging from 70% to about 95% by volume.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Xinyu Bao, Lee-Chung Lu, Jyh Chwen Frank Lee, Fong-yuan Chang, Sam Vaziri, Po-Hsiang Huang
  • Patent number: 11837503
    Abstract: The present disclosure relates to a system and a method for fabricating one or more integrated circuits (ICs). The system includes a plurality of logic tiles formed on a logic wafer and separated by at least one first scribe line, a respective logic tile including a function unit including circuitry configured to perform a respective function; at least one global interconnect configured to communicatively connect the plurality of logic tiles; a plurality of memory tiles formed on a memory wafer connected with the logic wafer, the plurality of memory tiles separated by at least one second scribe line that is substantially aligned with the at least one first scribe line, wherein the logic wafer and the memory wafer are diced along the at least one first scribe line and the at least one second scribe line to obtain a plurality of ICs, a respective IC including at least one logic tile connected with at least one memory tile.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: December 5, 2023
    Assignee: Alibaba Group Holding Limited
    Inventor: Wei Han
  • Patent number: 11837564
    Abstract: The invention provides a semiconductor bonding structure, the semiconductor bonding structure includes a first chip and a second chip which are bonded with each other, the first chip has a first bonding pad and the second bonding pad contacted and electrically connected to each other on a bonding interface, the first bonding pad and the second bonding pad are made of copper, and a heterogeneous contact combination in the first chip, the heterogeneous contact combination comprises a contact stack structure of a copper element, a tungsten element and an aluminum element, the tungsten element is located between the copper element and the aluminum element.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: December 5, 2023
    Assignee: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Chun-Lin Lu, Shou-Zen Chang, Ying-Tsung Chu, Chi-Ming Chen
  • Patent number: 11824044
    Abstract: Stacked semiconductor die assemblies with die support members and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a package substrate, a first semiconductor die attached to the package substrate, and a support member attached to the package substrate. The support member can be separated from the first semiconductor die, and a second semiconductor die can have one region coupled to the support member and another region coupled to the first semiconductor die.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: November 21, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Seng Kim Ye, Hong Wan Ng
  • Patent number: 11817373
    Abstract: A semiconductor arrangement and method of forming the semiconductor arrangement are provided. The semiconductor arrangement includes a device having a first surface and a second surface opposite the first surface. A first through substrate via (TSV) structure extends between the first surface and the second surface in a first region of the device. A second TSV structure extends between the first surface and the second surface in a second region of the device. The first TSV structure has a first cross-sectional area. The second TSV structure has a second cross-sectional area greater than the first cross-sectional area.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventor: Jen-Yuan Chang
  • Patent number: 11817445
    Abstract: Semiconductor device packages, packaging methods, and packaged semiconductor devices are disclosed. In some embodiments, a package for a semiconductor device includes an integrated circuit die mounting region and a molding material disposed around the integrated circuit die mounting region. An interconnect structure is disposed over the molding material and the integrated circuit die mounting region. A protection pattern is disposed in a perimeter region of the package. The protection pattern includes a conductive feature.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Jie Chen, Ying-Ju Chen, Hsien-Wei Chen
  • Patent number: 11817409
    Abstract: A bonded structure can include a first reconstituted element comprising a first element and having a first side comprising a first bonding surface and a second side opposite the first side. The first reconstituted element can comprise a first protective material disposed about a first sidewall surface of the first element. The bonded structure can comprise a second reconstituted element comprising a second element and having a first side comprising a second bonding surface and a second side opposite the first side. The first reconstituted element can comprise a second protective material disposed about a second sidewall surface of the second element. The second bonding surface of the first side of the second reconstituted element can be directly bonded to the first bonding surface of the first side of the first reconstituted element without an intervening adhesive along a bonding interface.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: November 14, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Belgacem Haba, Rajesh Katkar, Ilyas Mohammed, Javier A. DeLaCruz