With Pulse Modulation Patents (Class 342/134)
  • Patent number: 11988541
    Abstract: A method for radar-based measurement of a filling level of a filling material in a container includes, in successive measurement cycles, generating an evaluation curve, and the relevant current evaluation curve is stored; a first difference curve is formed based on the evaluation curve of the current measurement cycle and a stored evaluation curve of a preceding measurement cycle; and the filling level is determined based on a maximum in the current first difference curve. The filling level is thus established from the difference curve rather than from the evaluation curve, and the filling level can be determined with greater certainty—in particular in the case of filling material having rippled surfaces.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: May 21, 2024
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Winfried Mayer, Manuel Sautermeister
  • Patent number: 11927666
    Abstract: A secondary echo and a primary echo subjected to topographic echo processing are compared with each other. When there is a topographic echo in the primary echo or the secondary echo determined as a strong echo, an echo resulting from removal of the topographic echo is defined as a strong-topographic-echo-removed reception signal. Electric power of the topographic echo in the secondary echo or the primary echo determined as a weak echo and the strong-topographic-echo-removed reception signal are defined as weak echo parameters. Electric power of the weak echo estimated from a reception signal in a weak echo region resulting from phase correction of a reception signal resulting from removal of a frequency component of the strong echo from the strong-topographic-echo-removed reception signal representing the weak echo parameter, a spectral width of the weak echo representing the weak echo parameter, and a Doppler velocity of the weak echo are provided as spectral parameters.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: March 12, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hiroshi Sakamaki, Ikuya Kakimoto, Tomoya Matsuda, Takamichi Nakamizo
  • Patent number: 11923804
    Abstract: A temperature insensitive oscillator system. The system includes a substrate having a first surface and an opposing second surface, a CMOS device with one or more CMOS circuits attached to the first surface of the substrate, one or more piezoelectric transducers attached to an outer surface of the CMOS device, a voltage-controlled oscillator generating a RF frequency, which is transmitted as a plurality of short pulses to the one or more piezoelectric transducers, and one or more delays and oscillators using resistor and active components arranged alongside the piezoelectric transducers or on the CMOS device such that the voltage-controlled oscillator has minimal dependence on temperature, and has minimal deviation from a programmed frequency.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: March 5, 2024
    Assignee: Geegah, LLC
    Inventors: Amit Lal, Justin Kuo
  • Patent number: 11914021
    Abstract: An object is to enable measurement of position and velocity of a measurement object. A velocity measurement device includes a transmitting means, a receiving means, and a signal processing means. The transmitting means transmits a transmission signal by a transmitting antenna toward a measurement object. The receiving means receives a reflected wave from the measurement object with multiple receiving antennas and generates a reception signal for each of the receiving antennas. The signal processing means obtains a phase plane of the reflected wave with respect to an antenna plane of the multiple receiving antennas from a phase difference between the reception signals to specify an arrival direction of the reflected wave, obtains a distance to the measurement object from a propagation delay time of the reflected wave, and calculates a phase fluctuation of the reflected wave to calculate a velocity of the measurement object from the phase fluctuation.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: February 27, 2024
    Assignee: ALOUETTE TECHNOLOGY INC.
    Inventor: Hitoshi Nohmi
  • Patent number: 11892556
    Abstract: Disclosed is a method and apparatus for generating a radar signal, in which performance of radar detection is ensured while increasing a spectrum efficiency in a radar network. The method comprises generating a set of frequency-modulation waveforms, generating an orthogonal code set, generating a set of coded frequency-modulation waveforms through element operation between the set of frequency-modulation waveforms and the orthogonal code set, calculating an objective function for the set of frequency-modulation waveforms with regard to a different set of coded frequency-modulation waveforms and previous sets of coded frequency-modulation waveforms, and selecting a current polyphase code set as an optimized polyphase code set when a result of current calculation is better or smaller than a result of previous iteration, and performing phase perturbation by replacing an element randomly selected in the current polyphase code set selected as the optimized polyphase code set with another admissible-phase element.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: February 6, 2024
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyung Jung Kim, Min Soo Kang, Sang In Cho
  • Patent number: 11857300
    Abstract: Radio frequency motion sensors may be configured for operation in a common vicinity so as to reduce interference. In some versions, interference may be reduced by timing and/or frequency synchronization. In some versions, a master radio frequency motion sensor may transmit a first radio frequency (RF) signal. A slave radio frequency motion sensor may determine a second radio frequency signal which minimizes interference with the first RF frequency. In some versions, interference may be reduced with additional transmission adjustments such as pulse width reduction or frequency and/or timing dithering differences. In some versions, apparatus may be configured with multiple sensors in a configuration to emit the radio frequency signals in different directions to mitigate interference between emitted pulses from the radio frequency motion sensors.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: January 2, 2024
    Inventors: Stephen McMahon, Przemyslaw Szkot, Redmond Shouldice
  • Patent number: 11852712
    Abstract: To provide a radar device capable of improving azimuth estimation accuracy by compensating the Doppler phase shift of a moving target in a TDMA FMCW MIMO radar device. Provided is a radar device that allows transmitting antennas to perform transmission by performing sequential switching such that antenna element numbers are anterior-posterior symmetrical centering on a reference time and synthesizes a beat signal at the reference time from a first beat signal received by a receiving antenna before the reference time and a second beat signal received after the reference time.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: December 26, 2023
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Sachio Iida, Kenichi Kawasaki
  • Patent number: 11808834
    Abstract: A phased-array Doppler radar includes a two-way splitter, a transmit antenna, a receive antenna array, an ILO, a demodulation unit and a digital signal processing unit. A reference signal is split by the two-way splitter to the transmit antenna for transmission to targets and the ILO for injection locking. Signals reflected by the targets are received by the receive antenna array as received signals. An injection-locked signal generated by the ILO and the received signals received by the receive antenna array are delivered to the demodulation unit. The received signals are demodulated into baseband I/Q signals by the demodulation unit that uses the injection-locked signal as a local oscillator signal. The baseband I/Q signals are processed by the digital signal processing unit to obtain a digital beamforming pattern.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: November 7, 2023
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Tzyy-Sheng Horng, Chao-Kai Wen, Yi-Chen Lai, Yu-Chi Huang, Jui-Yen Lin, De-Ming Chian
  • Patent number: 11796580
    Abstract: A probe is described. The probe includes a probe antenna, a transmitter, a receiver and circuitry including hardware. The probe antenna is constructed of a dielectric material connected to a waveguide, the probe antenna has a far field region. The transmitter is coupled to the probe antenna. The receiver is coupled to the probe antenna. The hardware is configured to communicate with the transmitter to enable the transmitter to direct a pulse of electromagnetic energy to the probe antenna and to receive a reflection signal from the receiver, the hardware is configured to determine a material property of a material within the far-field region of the probe antenna by analyzing the reflection signal.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: October 24, 2023
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Jorge Luis Salazar Cerreno, Alessio Mancini, Boon Leng Cheong
  • Patent number: 11789117
    Abstract: Disclosed active reflector apparatus and methods that inhibit self-induced oscillation. One illustrative apparatus embodiment includes an amplifier and an adjustable phase shifter. The amplifier amplifies a receive signal to generate a transmit signal, the transmit signal causing interference with the receive signal. The adjustable phase shifter modifies the phase of the transmit signal relative to that of the receive signal to inhibit oscillation. A controller may periodically test a range of settings for the adjustable phase shifter to identify undesirable phase shifts prone to self-induced oscillation, and may maintain the phase shift setting at a value that inhibits oscillation.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 17, 2023
    Assignee: Ay Dee Kay LLC
    Inventors: Tom Heller, Danny Elad
  • Patent number: 11777619
    Abstract: Methods for determining calibration parameters to correct for frequency responses of one or more dielectric waveguides coupling a control unit to a first antenna node or to a series of antenna nodes that includes the first antenna node. An example method comprises transmitting, via a first dielectric waveguide coupling the control unit to the first antenna node, a radiofrequency (RF) test signal having a signal bandwidth covering a bandwidth of interest. The method further comprises receiving, via a second dielectric waveguide coupling the control unit to the first antenna node, a looped-back version of the transmitted RF test signal, and estimating a first one-way frequency response corresponding to the first (or second) dielectric waveguide, based on the RF test signal and the received loop-back version of the transmitted RF test signal.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: October 3, 2023
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Magnus Nilsson, Peter Jakobsson, Per Ingelhag, Sten Wallin
  • Patent number: 11747473
    Abstract: An apparatus for ascertaining a distance to an object has a light source unit for emitting an optical signal with a time-varying frequency, an evaluation device for ascertaining a distance to the object based on (a) a measurement signal that arose from the signal and was reflected at the object and (b) a reference signal that was not reflected at the object. The apparatus has also a dispersive element disposed in the signal path of the optical signal and an optical position sensor disposed downstream of this dispersive element in the signal path.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: September 5, 2023
    Assignee: CARL ZEISS AG
    Inventor: Jan Horn
  • Patent number: 11747465
    Abstract: A method for operating a radar sensor system including multiple radar sensors operating independently of one another in a motor vehicle, wherein the radar sensors are synchronized with one another with respect to their transmission times and transmission frequencies in such a way that two radar signals whose frequency separation is smaller than a certain minimum frequency separation are at no point in time transmitted simultaneously.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: September 5, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Marcel Mayer, Michael Schoor
  • Patent number: 11733352
    Abstract: A MIMO radar system.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: August 22, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Gor Hakobyan, Markus Gonser
  • Patent number: 11733346
    Abstract: The apparatus (e.g., a first radar device) may be configured to receive a second radar waveform from a second radar device; determine a transmission timing difference between a transmission time of a first radar waveform and a transmission time of the second radar waveform, where the first radar waveform may be transmitted by the first radar device; and generate a radar point cloud associated with one or more targets based on the received second radar waveform and the determined transmission timing difference. A second radar device may be configured to transmit a second radar waveform; receive, from one or more targets, one or more reflections of the second radar waveform; and transmit, to a first radar device, cooperative radar sensing information regarding the received one or more reflections.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: August 22, 2023
    Assignee: QUALCOMM INCORPORATED
    Inventors: Kapil Gulati, Junyi Li
  • Patent number: 11733375
    Abstract: Disclosed are an apparatus and a method for controlling a radar. More specifically, disclosed is a method of setting detection modes of a radar mounted to a vehicle and controlling radar transmission signals according to the detection modes. An embodiment provides an apparatus for controlling a radar including: a target detector configured to detect targets around a vehicle and classify the detected targets; a transmission pattern setter configured to set a transmission pattern of transmission signals, based on at least one piece of detection distance information of the detected targets, detection location information, detection height information, and information on a number of detected targets; and a transmission signal controller configured to select at least one array antenna from a plurality of array antennas according to the transmission pattern and radiate the transmission signals through the selected array antenna, a method thereof, and a system.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: August 22, 2023
    Assignee: HL KLEMOVE CORP.
    Inventor: Woo Young Kim
  • Patent number: 11719802
    Abstract: A radar method is described. According to one exemplary embodiment, the method includes generating a first RF oscillator signal in a first chip and supplying the first RF oscillator signal to a transmission (TX) channel of the first chip and transmitting the first RF oscillator signal from the TX channel of the first chip to the second chip via a transmission line.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: August 8, 2023
    Assignee: Infineon Technologies AG
    Inventors: Florian Starzer, Helmut Kollmann, Alexander Melzer, Rainer Stuhlberger, Roland Vuketich, Mathias Zinnoecker
  • Patent number: 11714183
    Abstract: An apparatus including a transmitter including a pulsed Radio Frequency (RF) source coupled to an antenna. A receiver includes an amplifier coupled to the antenna. A controller is configured to adjust one or more durations of a ranging cycle of the apparatus, wherein the ranging cycle includes a first duration of a gated mode and a second duration of a non-gated mode. The gated mode blinds the amplifier during a transmission of the transmitter. The non-gated mode reduces a gain of the amplifier during the transmission.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: August 1, 2023
    Assignee: NXP B.V.
    Inventors: Frank Leong, Xin He
  • Patent number: 11656320
    Abstract: Systems, methods, and apparatus for radar waveforms using orthogonal sequence sets are disclosed. In one or more examples, a vehicle for autonomous driving comprises a radar sensor. In some examples, the radar sensor comprises a waveform transmission module adapted to generate a phase-coded waveform based on a set of concatenated orthogonal sequences. Also, in some examples, the radar sensor comprises a receiver adapted to estimate a range and Doppler from a received echo from the phase-coded waveform. In one or more examples, the orthogonal sequences are Zadoff-Chu (ZC) sequences.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: May 23, 2023
    Assignee: METAWAVE Corporation
    Inventor: Jun Fang
  • Patent number: 11630206
    Abstract: Lidar and method for generating repeatable PPM waveforms to determine a range to a target include: a processor for a) creating a modulation pool, based on a maximum nominal PRF and a specified final PPM code length of N; b) obtaining a seed code; c) eliminating bad modulation levels from the modulation pool to generate a good modulation pool, d) selecting a modulation level from the good modulation pool; e) concatenating the selected modulation level to the seed code to generate an i-element modulation sequence; f) repeating steps c to e N times to generate an N-element modulation sequence; g) selecting a PRF less than the maximum nominal PRF; and h) generating a repeatable PPM waveform by applying the N-element modulation sequence to the selected PRF.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: April 18, 2023
    Assignee: RAYTHEON COMPANY
    Inventors: Adam Hodge Greenberg, Eran Marcus
  • Patent number: 11624818
    Abstract: A method for checking the plausibility of an initially known transverse movement of an object. The method includes: emission of a radar signal having constant signal frequency, and reception by a radar device of reflections of the radar signal having constant signal frequency; and checking the plausibility of the transverse movement of the object by analyzing frequency ranges corresponding to the transverse movement in a spectrum of the reflected radar signal having constant signal frequency.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: April 11, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Hermann Buddendick, Markus Schlosser
  • Patent number: 11595008
    Abstract: Low noise amplifiers (LNAs) with low noise figure are provided. In certain embodiments, an LNA includes a single-ended LNA stage including an input for receiving a single-ended input signal from an antenna and an output for providing a single-ended amplified signal, a balun for converting the single-ended amplified signal to a differential signal, and a variable gain differential amplification stage for amplifying the differential signal from the balun. Implementing the LNA in this manner provides low noise figure, high gain, flexibility in controlling gain, and less sensitivity to ground/supply impedance.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: February 28, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Sanjeev Jain, Haoran Yu, Nan Sen Lin, Gregory Edward Babcock, Kai Jiang, Hassan Sarbishaei
  • Patent number: 11592520
    Abstract: A method is described below which can be used in a radar system. According to one example implementation, the method comprises providing a digital baseband signal using a radar receiver. The baseband signal comprises a plurality of segments, wherein each segment is assigned to a chirp of an emitted chirp sequence and each segment comprises a specific number of samples.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: February 28, 2023
    Assignee: Infineon Technologies AG
    Inventors: Paul Meissner, Alexander Melzer, Christian Schmid, Mate Andras Toth
  • Patent number: 11559217
    Abstract: Radio frequency motion sensors may be configured for operation in a common vicinity so as to reduce interference. In some versions, interference may be reduced by timing and/or frequency synchronization. In some versions, a master radio frequency motion sensor may transmit a first radio frequency (RF) signal. A slave radio frequency motion sensor may determine a second radio frequency signal which minimizes interference with the first RF frequency. In some versions, interference may be reduced with additional transmission adjustments such as pulse width reduction or frequency and/or timing dithering differences. In some versions, apparatus may be configured with multiple sensors in a configuration to emit the radio frequency signals in different directions to mitigate interference between emitted pulses from the radio frequency motion sensors.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: January 24, 2023
    Inventors: Stephen McMahon, Przemyslaw Szkot, Redmond Shouldice
  • Patent number: 11555883
    Abstract: A radar system includes a transmitter including a power amplifier (PA) for amplifying a local oscillator (LO) signal, to generate an amplified signal. The radar system also includes a receiver including an IQ generator for generating an I signal based on the LO signal and for generating a Q signal based on the LO signal and a low noise amplifier (LNA) for amplifying a looped back signal, to generate a receiver signal. The receiver also includes a first mixer for mixing the receiver signal and the I signal, to generate a baseband I signal and a second mixer for mixing the receiver signal and the Q signal, to generate a baseband Q signal. Additionally, the radar system includes a waveguide loopback for guiding the amplified signal from the transmitter to the receiver as the looped back signal.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: January 17, 2023
    Assignee: Texas Instmments Incorporated
    Inventors: Samala Sreekiran, Krishnanshu Dandu, Ross Kulak
  • Patent number: 11372090
    Abstract: In one embodiment, a LIDAR device of an autonomous driving vehicle (ADV) includes a light emitter to emit a light beam towards a target, wherein at least a portion of the light beam is reflected from the target. The LIDAR device further includes an optical sensing unit including a first photodetector and a second photodetector. The first photodetector is a different type of photodetector from the second photodetector, where the optical sensing unit is to receive the portion of the light beam reflected from the target. When the optical sensing unit receives the portion of the light beam, the first photodetector generates a first optical sensor output signal and the second photodetector generates a second optical sensor output signal. The LIDAR device further includes a first circuitry portion to generate an intensity signal indicative of an intensity of the received portion of the light beam responsive to the first optical sensor output signal.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: June 28, 2022
    Assignee: BAIDU USA LLC
    Inventors: Tianjia Sun, Yaoming Shen, Xiangfei Zhou, Yang Han
  • Patent number: 11335538
    Abstract: The invention relates to a filter unit for filtering multiple pulse signals comprising a number of filter circuits, which are connected in parallel. Each filter circuit comprises an input and an output, wherein the input is configured to receive an amplitude of an input signal and the output is configured to activate an output signal. Each filter circuit has an allocated filter level and further comprises a pulse level detection circuit configured to detect a change of state of a pulse level of the input signal. The change of state comprises a transition from a first pulse level to a second pulse level and if the pulse level corresponds to the allocated filter level of the filter circuit the output of said filter circuit is activated.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: May 17, 2022
    Assignee: COMET AG PLASMA CONTROL TECHNOLOGIES
    Inventors: Manuel vor dem Brocke, Roland Schlierf
  • Patent number: 11280886
    Abstract: Systems, apparatus, articles of manufacture, and methods to reduce a scan for identifying physical objects are disclosed. An example system includes a light source to broadcast a light signal, a window adjuster to set a scan parameter for the light signal, and a transceiver to receive communication indicative of a physical position of a mobile unit. In the example system, the window adjuster is to adjust the scan parameter based on the physical position.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: March 22, 2022
    Assignee: Intel Corporation
    Inventors: Sean J. Lawrence, Arvind S
  • Patent number: 11181616
    Abstract: In some examples, a radar system includes first direct digital synthesizer (DDS) circuitry and first phase-locked loop (PLL) circuitry configured to generate a first sinusoidal signal based on a first DDS signal generated by the first DDS circuitry. In some examples, the radar system further includes transmitter circuitry configured to generate a radar signal based on the first sinusoidal signal. In some examples, the radar system also includes one or more antennas configured to transmit the radar signal and receive a return signal based on the radar signal. In some examples, the radar system includes second DDS circuitry, second PLL circuitry configured to generate a second sinusoidal signal based on a second DDS signal generated by the second DDS circuitry, and receiver circuitry configured to process the return signal based on the second sinusoidal signal.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: November 23, 2021
    Assignee: Honeywell International Inc.
    Inventors: David C. Vacanti, Marc M. Pos
  • Patent number: 10908272
    Abstract: A radar sensing system for a vehicle includes a transmitter configured for installation and use on a vehicle and able to transmit radio signals. The radar sensing system also includes a receiver and a processor. The receiver is configured for installation and use on the vehicle and is able to receive radio signals that include transmitted radio signals reflected from objects in the environment. The processor samples the received radio signals to produce a sampled stream. The processor processes the sampled stream such that the sampled stream is correlated with various delayed versions of a baseband signal. The correlations are used to determine an improved range, velocity, and angle of targets in the environment.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: February 2, 2021
    Assignee: Uhnder, Inc.
    Inventors: Raghunath K. Rao, Curtis Davis, Monier Maher, Steve Borho, Nikhilesh Bhagat, Jean P. Bordes
  • Patent number: 10823833
    Abstract: A controller for a FMCW radar system configured to: provide for emission by the FMCW radar system of a plurality of consecutive frequency modulated detection signals for detection and ranging, each of the frequency modulated detection signals varying between an initial frequency and a final frequency over a period of time extending from a start time to an end time; wherein at least one of said consecutive frequency modulated detection signals is provided with an offset to one or more of; the start time of the detection signal relative to a predetermined start time schedule; the end time of the detection signal relative to a predetermined end time schedule; the initial frequency of the detection signal relative to a predetermined initial frequency schedule; and the final frequency of the detection signal relative to a predetermined final frequency schedule; the offset based on a random value.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: November 3, 2020
    Assignee: NXP B.V.
    Inventor: Ralf Reuter
  • Patent number: 10670397
    Abstract: Provided is a distance measuring device and a method of measuring a distance. The distance measuring device detects light reflected by an object, generates an electrical signal based on the detected light, detects whether the electrical signal is saturated or not by comparing the electrical signal with a reference value, controls a magnitude of the electrical signal based on whether the signal is saturated, and calculates a distance to the object using the electrical signal.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: June 2, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tatsuhiro Otsuka, Jungwoo Kim, Heesun Yoon, Inoh Hwang
  • Patent number: 10637530
    Abstract: Space-time-frequency multiplexing (STFM) schemes for radio frequency (RF) scanning are disclosed in which complementary pairs of sequences (or “Golay pairs”) are transmitted at different times using multiple frequencies. The transmission and reception of the sequences can occur over multiple transmit (Tx) and/or receive (Rx) radio sectors to scan an entire area for range, azimuth, elevation, and (optionally) velocity of objects therein.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: April 28, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Evgeny Levitan, Evyatar Hemo, Simha Sorin, Ariel Yaakov Sagi
  • Patent number: 10605919
    Abstract: A method for processing echo pulses of an active 3D sensor to provide distance measurements of surroundings in front of the active 3D sensor includes defining a near range distance from the active 3D sensor and defining a last echo distance from the active 3D sensor greater than said defined near range distance. The method includes receiving a sequence of echo pulses of a signal emitted by the active 3D sensor and subjecting the sequence of echo pulses to a pre-defined trigger condition such that only those echo pulses are taken into consideration which fulfill the predefined trigger condition. The method also includes determining, from the echo pulses which fulfill the predefined trigger condition and that are received from distances greater than a defined near range distance, a first echo pulse and an adaptive echo pulse, and providing distance measurements of the surroundings in front of the 3D sensor using the determined first echo pulse and the determined adaptive echo pulse.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: March 31, 2020
    Assignee: Hensoldt Sensors GmbH
    Inventors: Patrick Kramper, Thomas Muensterer
  • Patent number: 10416018
    Abstract: A pulse running time filling level sensor includes a sampling device for sampling an IF signal at discrete instants and for converting the sampling values into digital sampling values, and a digital signal processing device for subsequent processing of the digital sampling values by calculating at least one new value characterizing the IF curve from respectively exactly two digital sampling values.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: September 17, 2019
    Assignee: VEGA GRIESHABER KG
    Inventors: Karl Griessbaum, Josef Fehrenbach, Roland Welle, Juergen Haas
  • Patent number: 10295653
    Abstract: One embodiment of the invention includes moving target indication (MTI) system. The system includes an MTI data processor configured to receive time-sampled location indicators associated with an approximate location of a moving target in a geographic scene of interest and to generate a moving target indicator associated with the moving target based on the time-sampled location indicators. The system also includes an image integrator configured to receive the moving target indicator associated with the moving target, to receive geography data associated with the geographic scene of interest, and to integrate the moving target indicator into the geography data as a three-dimensional moving target indicator at an approximate geographic location of the moving target.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: May 21, 2019
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Dale E. Burton, Stephen B. Duke, Erich Mirabal, Steven J. Wheeler
  • Patent number: 10033760
    Abstract: Embodiments for securely determining a separation distance between wireless communication devices is provided. These embodiments include receiving a measurement request and a first random identifier from a first wireless communication device at a second wireless communication device. The embodiments also includes deriving a transient key using the first random identifier, a second random identifier (generated by the second device), and a pre-shared key. The first and second random identifiers, the pre-shared key, and the transient key derived therefrom are shared between the first and second devices, but are not known to any other devices. The embodiments further include encrypting measurement data exchanged between the two devices using the transient key, and using the encrypted measurement data to calculate and verify a separation distance between the devices.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: July 24, 2018
    Assignee: Apple Inc.
    Inventors: Kapil Chhabra, Welly Kasten
  • Patent number: 9945934
    Abstract: A device comprising: a housing mountable on a back surface of a handheld electronic device; a radar coupled with the housing, the radar comprising: (a) a receiver unit comprising at least one receiving antenna element; (b) a transmitter unit comprising at least one transmitting antenna element; an integrated circuit (IC) module; and an interface unit configured to operatively couple the radar with the handheld electronic device.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: April 17, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dan Corcos, Danny Elad
  • Patent number: 9897690
    Abstract: A technique for a pulse/phase based laser rangefinding instrument utilizing a single photodiode in conjunction with separate pulse and phase receiver circuits. The photodiode receives phase and pulse ranging signals and a capacitor coupled to the photodiode and is operative to provide current through the photodiode to a transimpedance amplifier in a pulse mode of operation and from the photodiode through a tuned circuit to a narrow band amplifier in a phase mode of operation.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: February 20, 2018
    Assignees: LASER TECHNOLOGY, INC., KAMA-TECH (HK) LIMITED
    Inventor: Jeremy G. Dunne
  • Patent number: 9709663
    Abstract: A system and method for location of objects in 2-dimensional and 3-dimensional space using a minimum number of timed RF transmissions. System consists of a mobile device and a plurality of surveyed anchors. Two-Way Ranging (TWR) is done between the tag and any single anchor and the distance between the tag and remaining anchors is determined through listening to, or snooping, the TWR packet transmissions.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: July 18, 2017
    Assignee: Ciholas, Inc.
    Inventors: Mike Ciholas, Justin E Bennett, Daniel L Morris
  • Patent number: 9593976
    Abstract: The present invention relates to a pulsed level gauge system comprising frequency control circuitry. If an acquired signal indicates that the time between the previous filling level determination and the present filling level determination is shorter than a predefined time, the frequency control circuitry controls at least one of a transmit signal generating circuitry and a reference signal generating circuitry comprised in the pulsed level gauge system using previous frequency control settings stored in memory.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: March 14, 2017
    Assignee: Rosemount Tank Radar AB
    Inventors: Leif Nilsson, Hakan Delin, Hakan Nyberg
  • Patent number: 9319098
    Abstract: A method of securely communicating a data chirp signal from a transmitter to a receiver, the chirp signal comprising at least one symbol, each symbol comprising one or more identical chirps, each chirp encoding a symbol value, the method comprising: negotiating between the transmitter and the receiver encryption parameters of the chirp signal, the encryption parameters defining at least one property of each symbol of the chirp signal; at the transmitter, encrypting the chirp signal as negotiated; at the transmitter, encoding data in the chirp signal via the symbol value of each chirp; and transmitting the encrypted and encoded chirp signal from the transmitter to the receiver.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 19, 2016
    Assignee: Qualcomm Technologies International, Ltd.
    Inventor: Paul Dominic Hiscock
  • Patent number: 9035824
    Abstract: A system and method of radar location comprises radar signal emission means, an emitted pulse of duration T1 and index i starting at instant T2(i); means receiving reflected radar signals; means determining correlation between reconstruction of an emitted pulse and signal received during the time interval between T2(i)+2*T1 and T2(i+1). The means determining a correlation can reconstruct a set, of at least one truncated pulse j of duration T3(j), less than T1, corresponding to the final part of said emitted pulse, said truncated pulses having increasing respective durations, determining at least one first correlated signal j by correlation of said truncated pulse j and signal received during time interval between T2(i)+T1 and T2(i)+T1+T3(j) and determining a second signal, based on first correlated signals j, by copying the time interval, of said correlated signal j, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1), onto the time interval, of said second signal, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1).
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 19, 2015
    Assignee: Thales
    Inventors: Stéphane Kemkemian, Jean-Paul Artis, Jean-Michel Quellec
  • Patent number: 9024810
    Abstract: A method and apparatus for ranging finding of signal transmitting devices is provided. The method of signal reception is digitally based only and does not require receivers that are analog measurement devices. Ranging can be achieved using a single pulse emitting device operating in range spaced relation with a minimum of a single signal transmitter and a single digital receiver and processing circuitry. In general a plurality of transmitting pulsed emitters may be ranged and positioned virtually simultaneously in 3-dimensions (XYZ coordinates) using a configuration of a plurality of digital receivers arranged in any fixed 3-dimensional configuration. Applications may involve at least one single transmitter to receiver design to determine range, or at least one transmitted reflecting signal off from an object to determine range.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: May 5, 2015
    Assignee: XYZ Interactive Technologies Inc.
    Inventor: Andrew H. Lohbihler
  • Patent number: 9024816
    Abstract: A radar or sonar system amplifies the signal received by an antenna of the radar system or a transducer of the sonar system is amplified and then subject to linear demodulation by a linear receiver. There may be an anti-aliasing filter and an analog-to-digital converter between the amplifier and the linear receiver. The system may also have a digital signal processor with a network stack running in the processor. That processor may also have a network interface media access controller, where the system operates at different ranges, the modulator may produce pulses of two pulse patterns differing in pulse duration and inter-pulse spacing, those pulse patterns are introduced and used to form two radar images with the two images being derived from data acquired in a duration not more than twenty times larger than the larger inter-pulse spacing, or for a radar system, larger than one half of the antenna resolution time. One or more look-up tables may be used to control the amplifier.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: May 5, 2015
    Assignee: Raymarine UK Limited
    Inventors: Richard Jales, Andrew Lawrence, Matthieu Maindrou
  • Patent number: 9000974
    Abstract: Systems and methods for allowing dual-mode radar operation. An exemplary transmission system includes a hybrid coupler that receives a signal produced by a synthesizer and couples the received signal to two output ports. A pulse transmitter receives a pulse transmit-activate signal from a controller, receives an input signal from the hybrid coupler and, if the activate signal has been received, amplifies the received signal based on a predefined desired pulse output transmission setting. A frequency-modulation continuous-wave (FMCW) transmitter receives an FMCW transmit-activate signal from the controller, receives an input signal from the hybrid coupler and, if the activate signal has been received, amplifies the received input signal based on a predefined desired FMCW output transmission setting. An isolator protects the pulse transmitter during FMCW operation and also the FMCW transmitter from receiving power reflected off of pulse transmitter components.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: April 7, 2015
    Assignee: Honeywell International Inc.
    Inventor: David C. Vacanti
  • Patent number: 8982831
    Abstract: Data packets are transmitted from a terminal of a broadband radio communication system. For each transmission cycle in a transmission period data is received at a data interface of the terminal and buffered, and transmission of radio signals comprising the received data is enabled on expiry of a repetition interval from the start of a previous transmission. The repetition intervals are controlled to reduce a proportion of the transmission period for which transmission may occur at an allowed pulse repetition interval of a radar with which the terminal may interfere. The presence of radar pulses is checked during a wait period for each cycle while the terminal is not transmitting. If radar pulses are present, the transmission of radio signals which may interfere with the radar pulses is inhibited.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: March 17, 2015
    Assignee: Cambium Networks Limited
    Inventors: Martin Richard Crowle, Jan Jerzy Cynk
  • Patent number: 8976060
    Abstract: Distance between two radio frequency devices is estimated by receiving a plurality of spread spectrum chirp signals frequency offset from one another, and evaluating the received plurality of spread spectrum chirp signals for relative phase shifts between the plurality of spread spectrum chirp signals. A fine propagation time is derived using the phase shifts between the spread spectrum chirp signals. A frequency domain despreading window is shifted to reduce the influence of time-delayed near multipath signals in receiving the plurality of spread spectrum chirp signals.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 10, 2015
    Assignee: Digi International Inc.
    Inventor: Terry M. Schaffner
  • Patent number: 8928524
    Abstract: The present disclosure relates to the field of pulse compression in signal processing, and more particularly, to systems and methods for the synthesis of waveforms for suppressing sidelobes and sidebands using a combination of time and spectral control. More specifically, the present disclosure relates to a set of waveform symbols which can be used to maximize use of disaggregated grey-space spectrum, adapt to changing spectral condition, and maintain or enhance data rates relative to standard binary phase-shift keying (BPSK) under normal conditions.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: January 6, 2015
    Assignee: Technology Service Corporation
    Inventors: Carroll J. Nunn, Menachem Levitas
  • Patent number: 8902103
    Abstract: Disclosed is a radar apparatus supporting short range and long range radar operations, wherein a plurality of short range transmitting chirp signals and a plurality of long range transmitting chirp signals are generated by a predetermined modulation scheme and is transmitted to an object through at least one transmitting array antenna and signals reflected from the object is received through at least one receiving array antenna, and the plurality of long range transmitting chirp signals have transmission power larger than that for the plurality of short range transmitting chirp signals.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 2, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Cheon Soo Kim, Pil Jae Park, Min Park, Kyung Hwan Park, Dong-Young Kim, Jeong-Geun Kim, Bon Tae Koo, Hyun Kyu Yu