Faujasite; E.g., X, Y, Czs-3, Ecr-4, Z-14hs, Vhp-r Patents (Class 423/DIG21)
  • Patent number: 6146613
    Abstract: A method is provided for zeolite synthesis from a synthesis medium containing in particular a trivalent aluminum source, a tetravalent silicon source, at least an alkaline or alkaline-earth cation in hydroxide form and water in a reactor containing a solid helical moving body in a guiding tube defining an internal space and a space external to the tube. The invention is characterized in that the synthesis medium is circulated in the reactor in a continuous flow passing through the internal space then the space external to the tube and returning to the internal space, only driven by the roation of the solid helical moving body, at a speed of less than 500 rpm, in the tube which is kept fixed, the synthesis medium being kept at a temperature suitable for at least one of the ripening operations or the crystal growth of the synthesized zeolite. The invention also is directed to a device for implementing the method.
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: November 14, 2000
    Assignee: Elf Aquitaine
    Inventors: Didier Anglerot, Jacques Bousquet, Francesco Di Renzo, Jean-Paul Klein, Philippe Schulz, Christine Bebon, Didier Colson
  • Patent number: 6136291
    Abstract: Novel crystalline zeolitic materials of the faujasite structure having an increased ratio of zeolitic surface area to mesoporous surface area and distinctive X-Ray Diffraction peak ratios are produced by calcining zeolite Y of low sodium content at temperatures above 600.degree. C.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: October 24, 2000
    Assignee: Mobile Oil Corporation
    Inventors: Arthur W. Chester, C. Patricia Clement, Scott Han
  • Patent number: 6103214
    Abstract: A composition of matter represented by the formulaM.sup.n+.sub.z/n [Si.sub.(2-x-y) Al.sub.(y) Zn.sub.(x) ]O.sub.4 .multidot..cndot.wH.sub.2 OwhereinM is a cation selected from Groups 1, 2, 7, 10, 11, 12 and the f block elements as defined by the Periodic Table of the elements as adopted by IUPAC; n is the valence of the selected cation, M; x is greater than or equal to 0.02 but less than or equal to 1;y is less than or equal to 0.98; z>0.54; and w ranges from 0 to about 8;provided that when z.gtoreq.0.80, then 2x+y does not equal z;which composition of matter has the FAU structure with zinc residing in tetrahedral positions in the framework of the FAU structure;and whereupon such composition of matter is converted to a hydrated sodium form, the hydrated sodium form of the composition of matter exhibits a lattice constant (a.sub.0)wherein ##EQU1## where R represents the Si/Al molar ratio of the composition of matter.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: August 15, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Edward MacDougall, Thomas Albert Braymer, Charles Gardner Coe
  • Patent number: 6054113
    Abstract: A method for preparing novel zeolitic catalyst compositions having a high Si/Al ratio and a crystallinity of at least about 70%. The method involves cation exchanging an as synthesized faujasite material having an Si/Al greater than about 4 with a component selected from the group consisting of ammonium ions and mineral acids, then steam calcining said cation exchanged faujasite in a single steam calcination step at a temperature from about 900.degree. F. to about 1 500.degree. F.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: April 25, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: David E. W. Vaughan, Karl G. Strohmaier, Gary B. McVicker, Owen C. Feeley
  • Patent number: 6036939
    Abstract: A novel heat-resistant low-silica zeolite, an industrial production process, and uses of the low-silica zeolite are provided. The heat-resistant low-silica zeolite contains Si and Al in a molar ratio of SiO.sub.2 /Al.sub.2 O.sub.3 ranging from 1.9 to 2.1, and has sodium and/or potassium as metal cation, wherein the low-silica zeolite contains low-silica faujasite type zeolite at a content of not lower than 88%, and has a thermal decomposition temperature ranging from 870.degree. C. to 900.degree. C. in the air. The process for producing the heat-resistant low-silica zeolite comprises mixing a solution containing an aluminate with another solution containing a silicate, allowing the resulting mixture to gel, and aging the resulting gel, at the temperature of from 0.degree. C. to 60.degree. C., to prepare a slurry having a viscosity ranging from 10 to 10000 cp and containing amorphous aluminosilicate having a specific surface area of not less than 10 m.sup.2 /g with an SiO.sub.2 /Al.sub.2 O.sub.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: March 14, 2000
    Assignee: Tosoh Corporation
    Inventors: Hajime Funakoshi, Yoshinori Shirakura, Shunsuke Yatsunami, Kazuaki Yamamoto, Nobuhiro Ogawa, Takashi Mori, Atsushi Harada
  • Patent number: 6027708
    Abstract: The present invention relates to a process for the synthesis of flyash based zeolite-Y (FAZ-Y), comprising grainding and mixing of flyash with caustic soda in a ratio ranging between 1:0.4-1:1.2 to obtain a fine homogenous fusion mixture, heating the said fusion mixture in an invert vessel at about 500-600.degree. C. for about 1-2 hours to obtain a fused mass, cooling, milling, and mixing of the said fused mass in distilled water for about 8-12 hours, subjecting the said slurry to hydrothermal crystallization at about 90-110.degree. C. for 8 to 12 hours to obtain FAZ-Y crystals, washing the said crystals with water and then subjecting the washed crystals to oven drying at 50-60.degree. C. to obtain the desired FAZ-Y crystals.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: February 22, 2000
    Assignee: Council of Scientific & Industrial Research
    Inventors: Sadhana Rayalu, Nitin Kumar Labhasetwar, Purushottam Khanna
  • Patent number: 6004527
    Abstract: This invention relates to the synthesis of large pore composite molecular sieves and to the synthetic large pore composite molecular sieves so produced. The molecular sieves of the invention have the same general utilties of the comparable molecular sieves of the prior art but have been found to be superior catalysts and absorbents. This invention relates to a hydrothermal synthesis of large pore molecular sieves from nutrients, at least one of which contains an amorphous framework-structure, and which framework-structure is essentially retained in the synthetic molecular sieve. This invention stems from a discovery that the intrinsic porosity characteristics of a nutrient that possesses an amorphous cation oxide-framework can be substantially retained in the final molecular sieve containing product formed by a hydrothermal process by carefully controlling the conditions under which the hydrothermal process is conducted.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: December 21, 1999
    Assignee: ABB Lummus Global Inc.
    Inventors: Lawrence L. Murrell, Rudolf A. Overbeek, Yun-feng Chang, Nelleke Van der Puil, Chuen Y. Yeh
  • Patent number: 5997841
    Abstract: A composition of matter represented by the formulaM.sup.n+.sub.(2x+y)/n [Si.sub.(2-x-y) Al.sub.(y) Zn.sub.(x) ]O.sub.4 ;whereinM is cation selected from Groups 1, 2, 7, 10, 11, 12 and the f block elements as defined by the Periodic Table of the elements as adopted by IUPAC; n is the valence of the selected cation; M; x is greater than or equal to 0.02 but less than or equal to 1;y is a value less than or equal to 0.98; and 2x+y is greater than or equal to 0.80;wherein the composition of matter has the FAU structure. The compositions have utility as gas separation adsorbents in processes for separating oxygen from nitrogen in air.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: December 7, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Edward Mac Dougall, Thomas Albert Braymer, Charles Gardner Coe
  • Patent number: 5993773
    Abstract: Disclosed are high purity low-silica faujasite type zeolite showing a faujasite single phase on X-ray diffraction, having a SiO.sub.2 /Al.sub.2 O.sub.3 molar ratio of 1.9 to 2.1 and a water adsorption of 35.0% by weight or more when converted to the Na type, and comprising particles having smaller primary particle size and particles having larger primary particle size, wherein the primary particle size of the smaller particles is from 1 .mu.m to 8 .mu.m, the primary particle size of the larger particles is from 5 .mu.m to 15 .mu.m, and the particles having smaller primary particle size accounts for 90% or more of the total particle number; and a method for producing low-silica faujasite type zeolite having a SiO.sub.2 /Al.sub.2 O.sub.3 molar ratio of 1.9 to 2.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: November 30, 1999
    Assignee: Tosoh Corporation
    Inventors: Hajime Funakoshi, Yoshinori Shirakura
  • Patent number: 5989518
    Abstract: Applicants have developed a continuous process for synthesizing various molecular sieves. The process enables one to control both the particle size and particle size distribution. Any of the molecular sieves represented by the empirical formula on an anhydrous basis: rR.sub.2 O:(Si.sub.x Al.sub.y P.sub.z)O.sub.2, where R is at least one templating agent, "r" "x" "y" and "z" are the mole fractions of R, Si, Al and P respectively, can be prepared using this process. The process involves continuously adding reactive sources of the desired components along with a structure directing agent into a continuous crystallization reactor. Either interstage backmixing is introduced or the number of stages is adjusted in order to control particle size. Finally, one way to control particle size distribution is to split the product stream into at least two streams and flowing each stream to a wet miller operated at different severity and then reblending to obtain at least a bimodal distribution.
    Type: Grant
    Filed: December 29, 1998
    Date of Patent: November 23, 1999
    Assignee: UOP LLC
    Inventors: Medhat Khalil Tannous, Sonu Marchioretto, Lyle Edward Monson
  • Patent number: 5948383
    Abstract: This invention relates to zeolitic molecular sieve compositions characterized by outstanding capability to complex multivalent cations, especially calcium. In particular, the invention relates to novel zeolitic molecular sieve compositions, especially those based on molecular sieves having a high alumina-to-silica ratio, in which crystals of the zeolite are modified by the inclusion of occluded silicate.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: September 7, 1999
    Assignee: Engelhard Corporation
    Inventors: Steven M. Kuznicki, Tadeusz W. Langner, Jacqueline S. Curran, Valerie A. Bell
  • Patent number: 5928623
    Abstract: The performances of the industrial manufacture of LSX faujasite are improved by proceeding to the aging and the crystallization of the gel by stirring with a Archimedean screw stirrer. In particular, the duration of the aging is shortened considerably without affecting the crystallinity of the final product.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: July 27, 1999
    Assignee: Ceca S. A.
    Inventors: Dominique Plee, Jean-Jacques Masini
  • Patent number: 5908823
    Abstract: A microporous crystalline material named zeolite A-LSX having, in its anhydrous form, an oxides molar composition corresponding to formula (I):(M.sub.2/n O+M'.sub.2/n O).Al.sub.2 O.sub.3.zSiO.sub.2 (I)in which:M and M', identical or different, represent a cation of an alkali or alkaline earth metal of valency n;z is a number between 2.1 and 2.6, extremes included.Said microporous crystalline material can be used as a builder in detergent systems.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: June 1, 1999
    Assignee: Condea Augusta S.p.A.
    Inventors: Agostino Zatta, Pier Domenico Mattioli, Maria Roberta Rabaioli, Pierino Radici, Rosario Aiello, Fortunato Crea
  • Patent number: 5902564
    Abstract: The invention relates to a synthetic crystalline material and its use in catalytic conversion of organic compounds and as a sorbent. The crystalline material contains one or more microporous crystalline phases, having a micropore volume greater than or equal to about 0.15 cc/g distributed in channels between about 3 to about 15 .ANG. in average diameter which is rendered accessible by a mesopore volume of greater than or equal to about 0.1 cc/g distributed in channels between about 20 to about 100 .ANG. in average diameter. A process is also provided for preparing the crystalline material of the present invention.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: May 11, 1999
    Assignee: Intevep, S.A.
    Inventors: Juan Lujano, Yilda Romero, Jose Carrazza
  • Patent number: 5863516
    Abstract: The present invention relates to colloidal suspensions of discrete particles of colloidal zeolite and a method for preparing such zeolite from clear tetraalkylammonium stabilized aluminiumsilicate solutions. Smaller amounts of well defined and controlled metal hydroxide solutions are added to these alumiumsilicate solutions to enable the synthesis of a specific zeolite as well as to control zeolite yield. The colloidal suspensions are characterized by an average particle size of less than 250 nanometers and preferably, less than 200 nanometers together with the fact that the particle size distribution expressed as the geometric standard deviation is less than 1.30 and preferably less than 1.20. Zeolite sols synthesized according to this invention display Tyndall light scattering typical for colloidal suspensions as well as a very low rate of sedimentation due to the small particle size.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: January 26, 1999
    Assignee: Exxon Chemical Patent Inc.
    Inventors: Jan-Erik Otterstedt, Per Johan Sterte, Brian J. Schoeman
  • Patent number: 5849258
    Abstract: The invention relates to a synthetic crystalline material and its use in catalytic conversion of organic compounds and as a sorbent. The crystalline material contains one or more microporous crystalline phases, having a micropore volume greater than or equal to about 0.15 cc/g distributed in channels between about 3 to about 15 .ANG. in average diameter which is rendered accessible by a mesopore volume of greater than or equal to about 0.1 cc/g distributed in channels between about 20 to about 100 .ANG. in average diameter. A process is also provided for preparing the crystalline material of the present invention.
    Type: Grant
    Filed: June 6, 1996
    Date of Patent: December 15, 1998
    Assignee: Intevep, S.A.
    Inventors: Juan Lujano, Yilda Romero, Jose Carrazza
  • Patent number: 5785944
    Abstract: A method is disclosed for preparing crystalline aluminosilicate Y zeolite from a reaction mixture containing only sufficient water to produce Y zeolite. In one embodiment, the reaction mixture is self-supporting and may be shaped if desired. In the method, the reaction mixture is heated at crystallization conditions and in the absence of an added external liquid phase, so that excess liquid need not be removed from the crystallized product prior to drying the crystals.
    Type: Grant
    Filed: July 31, 1996
    Date of Patent: July 28, 1998
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 5772917
    Abstract: The invention relates to a luminescent zeolite of the Faujasite type containing Ce.sup.3+ ions. Such a zeolite can for instance be used in the luminescent screen of a low pressure mercury discharge lamp for use in photochemical processes. According to the invention the zeolite further contains cations S.sup.n+, wherein n.gtoreq.2 and the sum of the amount of Ce.sup.3+ ions and the amount of cations S.sup.n+ per unit cell of the zeolite is at least 16. The zeolite exhibits a high quantum efficiency for converting UV radiation of 254 nm into radiation having an emission maximum between 315 and 400 nm, even in case the Ce.sup.3+ ion content is relatively low.
    Type: Grant
    Filed: February 7, 1997
    Date of Patent: June 30, 1998
    Assignee: U.S. Philips Corporation
    Inventors: Ulrich H. Kynast, Volker U. Weiler
  • Patent number: 5762902
    Abstract: The invention concerns a composition comprising at least one matrix, at least one faujasite type zeolite and at least one TON type zeolite. The TON type zeolite can be Nu-10, THETA-1, KZ-2, or ISI-1. The catalyst also contains at least one hydrogenating element from groups VIII and VI.The catalyst is particularly for use for hydrocracking to maximize the yield of middle distillates (kerosine and gas oil).
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: June 9, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Samuel Mignard, Nathalie George-Marchal, Slavik Kasztelan
  • Patent number: 5716593
    Abstract: A method is disclosed for preparing crystalline aluminosilicate Y-type faujasite from a reaction mixture containing an organic template capable of producing Y-type faujasite. The reaction mixture contains only sufficient water to produce Y-type faujasite. In one embodiment, the reaction mixture is self-supporting and may be shaped if desired. In the method, the reaction mixture is heated at crystallization conditions and in the absence of an added external liquid phase, so that excess liquid need not be removed from the crystallized product prior to drying the crystals.
    Type: Grant
    Filed: July 31, 1996
    Date of Patent: February 10, 1998
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 5705142
    Abstract: The present invention disclosed a crystalline aluminosilicate which has the following characteristics:(A) an SiO.sub.2 /Al.sub.2 O.sub.3 molar ratio as determined by chemical analysis of from 5 to 11;(B) a unit cell dimension of from 24.45 to 24.55(C) a molar ratio of the Al contained in the zeolite framework to the total A1 contained in the aluminosilicate of from 0.3 to 0.9 calculated by the equations specified in the specification;(D) an alkali metal content, in terms of oxide, of from 0.02 to 1.5% by weight;(E) an X-ray diffraction pattern having peaks characteristic of zeolite Y; and(F) an ignition loss of from 0.5 to 20% by weight; anda process for producing the same, and a catalyst employing the same for the catalytic cracking of a hydrocarbon oil and the said catalyst which contains at least one metal selected from rare earth metals and alkaline earth metals.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: January 6, 1998
    Assignees: Cosmo Research Institute, Cosmo Oil Co., Ltd.
    Inventors: Masaki Tan-no, Seiichi Harima, Mitsugu Tsujii, Mitsuru Ohi
  • Patent number: 5695735
    Abstract: The invention concerns a process for the synthesis of zeolites based on element(s) T and mesoporous solids based on element(s) T, T being silicon and/or aluminium, comprising the following sequence of steps:i) synthesizing a reaction medium which is a homogeneous source of element(s) T containing:a) at least one source of element(s) T selected from the group formed by aqueous basic solutions of silica or silica and alumina and alcoholic solutions of alkyl tetraorthosilicate and trialkoxyaluminium;b) optionally, at least one structuring agent;c) optionally, seeds of the desired crystalline phase;ii) heating the reaction medium to a temperature in the range 20.degree. C. to 220.degree. C. for a period in the range several minutes and several days;iii) injecting at least one chemical agent at a controlled rate to generate polycondensable species in said medium.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: December 9, 1997
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Pierre-Yves Legoff, Philippe Caullet, Jean-Louis Guth
  • Patent number: 5665325
    Abstract: Silica-bound extruded zeolites may be converted into binder-free zeolite aggregates by aging the zeolite in an aqueous ionic solution which contains hydroxy ions such that the initial molar ratio of OH.sup.- :SiO.sub.2 is up to 1.2 and which causes the silica binder to be converted substantially to zeolite of the type initially bound. Such extrudates have excellent mechanical strength and show advantageous properties such as adsorption comparable with non-extruded zeolite powder.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: September 9, 1997
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Johannes Petrus Verduijn
  • Patent number: 5646082
    Abstract: The present invention disclosed a crystalline aluminosilicate which has the following characteristics:(A) an SiO.sub.2 /Al.sub.2 O.sub.3 molar ratio as determined by chemical analysis of from 5 to 11;(B) a unit cell dimension of from 24.45 to 24.55 .ANG.;(C) a molar ratio of the Al contained in the zeolite framework to the total Al contained in the aluminosilicate of from 0.3 to 0.9 calculated by the equations specified in the specification;(D) an alkali metal content, in terms of oxide, of from 0.02 to 1.5% by weight;(E) an X-ray diffraction pattern having peaks characteristic of zeolite Y; and(F) an ignition loss of from 0.5 to 20% by weight; anda process for producing the same, and a catalyst employing the same for the catalytic cracking of a hydrocarbon oil and the said catalyst which contains at least one metal selected from rare earth metals and alkaline earth metals.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: July 8, 1997
    Assignees: Cosmo Research Institute, Cosmo Oil Co., Ltd.
    Inventors: Masaki Tan-no, Seiichi Harima, Mitsugu Tsujii, Mitsuru Ohi
  • Patent number: 5645811
    Abstract: Finely ground zeolithic alkali metal aluminum silicates having the general formula: xMe.sub.2 O.Al.sub.2 O.sub.3.ySiO.sub.2.zH.sub.2 O, are prepared by mixing both reaction components, alkali metal silicate and alkali metal aluminate, in the presence of a stoichiometrically excessive amount of alkali metal hydroxide. The thus obtained gel is matured, the reaction mixture is heated up to crystallisation temperature, then crystallised. During crystallisation, at least one of both reaction components is added to the reaction mixture.
    Type: Grant
    Filed: September 22, 1995
    Date of Patent: July 8, 1997
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Peter Kuhm, Rainer Salz, Gerhard Blasey
  • Patent number: 5637287
    Abstract: A process to make high silica faujasite family zeolites using preformed gels and templates derived from recycled mother liquors.
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: June 10, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: David E. W. Vaughan, Karl G. Strohmaier
  • Patent number: 5601798
    Abstract: The mesopore volume in pores of diameters ranging from 2 to 60 nm of zeolite Y materials is increased by the hydrothermal treatment of such zeolites at temperatures above the atmospheric boiling point of the treating solution. Unique zeolites are produced as result of such process.
    Type: Grant
    Filed: August 30, 1994
    Date of Patent: February 11, 1997
    Assignee: PQ Corporation
    Inventors: David A. Cooper, Thomas W. Hastings, Elliot P. Hertzenberg
  • Patent number: 5567407
    Abstract: The present invention is a composition, a synthesis of the composition and a method of using the composition for selectively adsorptively separating nitrogen from oxygen wherein the composition is a crystalline EMT with a Si/Al ratio less than 2.0 and a lithium cation exchange of at least 80%, preferably including an intergrowth with a crystalline FAU structure, wherein the pure or intergrowth compositions have the chemical formula:(0.20-0.0)M.sub.2/n O:(0.80-1.0)Li.sub.2 O:X.sub.2 O.sub.3 :(2.0 to <4.0)SiO.sub.2wherein M=a metal cation other than lithium having a valence of n, and X is selected from the group consisting of aluminum, gallium and boron, preferably aluminum.
    Type: Grant
    Filed: May 12, 1994
    Date of Patent: October 22, 1996
    Inventors: Charles G. Coe, Thomas R. Gaffney, Hong-Xin Li, Yanliang Xiong, Johan A. Martens, Pierre A. Jacobs
  • Patent number: 5549881
    Abstract: A process to make a seed high silica zeolite having a faujasite structure and a silica to alumina ratio greater than 6, and containing tetrapropyl ammonium and/or tetrabutyl ammonium trapped within the supercages of said structure. The optimally seeds are aged for specific times.
    Type: Grant
    Filed: November 29, 1994
    Date of Patent: August 27, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: David E. W. Vaughan, Karl G. Strohmaier
  • Patent number: 5487882
    Abstract: A method for producing crystalline synthetic faujasite of the zeolite "X" type is disclosed. The method comprises (a) separately preparing a sodium silicate solution and a sodium aluminate solution, (b) admixing the sodium silicate solution and the sodium aluminate solution at high shear until a mixture results having a ratio of sodium oxide to silica of 0.4:1 to 2:1, silica to alumina of 2.2:1 to 3.5:1, and water to sodium oxide of 20:1 to 70:1, (c) heating said mixture to a temperature of about 80.degree. to 120.degree. C. in the absence of any further mixing for a period of time sufficient to produce the desired crystalline faujasite of the zeolite "X" type, and (d) recovering said zeolite "X".
    Type: Grant
    Filed: July 19, 1994
    Date of Patent: January 30, 1996
    Assignee: Albemarle Corporation
    Inventors: Patrick C. Hu, Eric W. Liimatta
  • Patent number: 5460796
    Abstract: Silica-bound extruded zeolites may be converted into binder-free zeolite aggregates by aging the zeolite in an aqueous ionic solution which contains hydroxy ions such that the initial molar ratio of OH-:SiO.sub.2 is up to 1.2 and which causes the silica binder to be converted substantially to zeolite of the type initially bound. Such extrudates have excellent mechanical strength and show advantageous properties such as adsorption comparable with non-extruded zeolite powder.
    Type: Grant
    Filed: November 7, 1994
    Date of Patent: October 24, 1995
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Johannes P. Verduijn
  • Patent number: 5447709
    Abstract: Process for the synthesis of faujasite, having a Si/Al ratio greater than 1 and which can exceed 3, in the presence of a structuring agent consisting of at least one carbonaceous macrocycle having 10 to 24 atoms per ring and containing heteroatoms chosen from oxygen, nitrogen, sulphur or silicon, the macrocycle being introduced into the reaction medium in the form of a crude synthetic sodium complex.
    Type: Grant
    Filed: October 25, 1993
    Date of Patent: September 5, 1995
    Assignee: Societe Nationale Elf Aquitaine
    Inventors: Didier Anglerot, Beatrice Feron, Jean-Louis Guth
  • Patent number: 5435987
    Abstract: Ammonium zeolites of extremely low alkali metal content are prepared by a process of potassium ion exchange followed by ammonium ion exchange. Zeolite X or zeolite Y that contain a significant amount of sodium are contacted with a potassium salt solution under conditions that provide a substantial exchange of potassium for sodium. The potassium enriched zeolite is then contacted with an ammonium salt solution so that the ammonium ion replaces the sodium and potassium ions. The resulting ammonium zeolite X or Y contains considerably less than 1% alkali metal calculated as Na.sub.2 O.
    Type: Grant
    Filed: July 22, 1993
    Date of Patent: July 25, 1995
    Assignee: PQ Corporation
    Inventor: David A. Cooper
  • Patent number: 5425934
    Abstract: Disclosed is a method for treating synthetic zeolite to remove organic template material therefrom and concurrently therewith effect dealumination of the zeolite. The method comprises the steps of providing a body of synthetic zeolite containing organic template material, the zeolite having an SiO.sub.2 /Al.sub.2 O.sub.3 ratio of at least 7:1. The body is treated with a solution comprised of an alcohol selected from methanol, ethanol and propanol and an acid selected from hydrochloric, nitric and sulfuric acid at a temperature and time to remove the organic template material therefrom and to effect dealumination thereof to provide a treated zeolite product. The treated product is washed to remove residual solution and then dried to provide a synthetic zeolite product containing a reduced amount of organic template material and having an SiO.sub.2 /Al.sub.2 O.sub.3 ratio of at least 7:1.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: June 20, 1995
    Assignee: Gas Research Institute
    Inventors: Prakash B. Malla, Sridhar Komarneni
  • Patent number: 5419891
    Abstract: The present invention is directed to an at least binary exchanged X-zeolite having lithium and zinc cations in a ratio of preferably 5% to 40% zinc and 50% to 95% lithium, wherein the sum of the lithium and zinc ion exchange is at least 65% of the exchangeable ion content. Theses adsorbents are useful in a process for separating nitrogen from gas mixtures containing nitrogen and less strongly adsorbed components such as oxygen, hydrogen, argon or helium.
    Type: Grant
    Filed: September 17, 1993
    Date of Patent: May 30, 1995
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Charles G. Coe, John F. Kirner, Ronald Pierantozzi, Thomas R. White
  • Patent number: 5417957
    Abstract: The present invention is directed to an at least binary exchanged X-zeolite having lithium and a divalent cation selected from the group consisting of cobalt, copper, chromium, iron, manganese, nickel and mixtures thereof in a ratio of preferably 5% to 50% of the divalent cation and 50% to 95% lithium. Theses adsorbents are useful in a process for separating nitrogen from gas mixtures containing nitrogen and less strongly adsorbed components such as oxygen, hydrogen, argon or helium.
    Type: Grant
    Filed: September 17, 1993
    Date of Patent: May 23, 1995
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Charles G. Coe, John F. Kirner, Ronald Pierantozzi, Thomas R. White
  • Patent number: 5401488
    Abstract: Molecular sieve compositions are prepared by extracting aluminum and substituting chromium and/or tin for extracted aluminum to give molecular sieve products containing framework chromium and/or tin atoms. The process of preparing the chromium and/or tin-containing molecular sieves involves contacting a starting molecular sieve with a solution or slurry of at least one of a fluoro salt of chromium or a fluoro salt of tin under effective process conditions to provide for aluminum extraction and substitution of chromium and/or tin.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: March 28, 1995
    Assignee: UOP
    Inventors: Gary W. Skeels, Diane M. Chapman, Edith M. Flanigen
  • Patent number: 5393511
    Abstract: A process is provided for the preparation of zeolites belonging to the faujasite structural class and exhibiting a Si:Al ratio higher than 1 in which a reaction mixture is first produced, which has a pH higher than 10 and contains water, a source of tetravalent silicon, a source of trivalent aluminum, a source of hydroxide ions in the form of a strong inorganic or organic base and a structuring agent ST so as to produce an aluminosilicate gel having the desired composition to permit its crystallization into a compound of the faujasite structural class. The gel obtained is kept at a temperature, pressure and for a sufficient period to effect the crystallization of the gel into a precursor of the zeolite consisting of the zeolite trapping the structuring agent ST in its cavities and the precursor is then subjected to a calcination to destroy the structuring agent and to produce the zeolite.
    Type: Grant
    Filed: July 27, 1992
    Date of Patent: February 28, 1995
    Assignee: Societe Nationale Elf Aquitaine
    Inventors: Francois Delprato, Jean-Louis Guth, Didier Anglerot, Catherine Zivkov
  • Patent number: 5389357
    Abstract: A process for the manufacture of a modified aluminosilicate zeolite is disclosed which includes contacting a starting zeolite in an aqueous phase with a dealuminating agent at a pH value of lower than 4 in the presence of a soluble silica. A novel zeolite composition is also disclosed which has increased acid and thermal stability.
    Type: Grant
    Filed: June 1, 1994
    Date of Patent: February 14, 1995
    Assignee: Catalysts & Chemicals Industries Co., Ltd.
    Inventors: Goro Sato, Yusaku Arima, Takanori Ida
  • Patent number: 5370859
    Abstract: Sodium type X zeolite crystals of a particle size of 50 .mu.m or more are grown from seed crystals at a rate of about 5 .mu.m per day in a mother liquor having an approximate composition 0.94 Na.sub.2 O, 0.011 Al.sub.2 O.sub.3, and 0.200 SiO.sub.2 mol/kg by adding a fine silica powder, a somewhat coarser alumina powder, and sodium hydroxide from time to time. The addition rates are such as to maintain the mother liquor at a super-saturation level of less than 20% with respect to the alumina to avoid the formation of a gel. Throughout the growing period the mother liquor is stirred and maintained at a temperature of about 95.degree.C.
    Type: Grant
    Filed: January 5, 1993
    Date of Patent: December 6, 1994
    Assignee: Unisearch Limited
    Inventor: Ian L. MacLaine-Cross
  • Patent number: 5366720
    Abstract: Low silica forms of faujasite-type zeolites are prepared from more siliceous forms of the same zeolite species by contacting the starting zeolite with a highly caustic concentrated sodium aluminate solution at elevated temperatures. In view of the fact that the process does not favor the formation of undesirable impurity phases such as zeolite A and thus does not require the presence of zeolite A nucleation inhibitors, the process is particularly advantageous in the production of forms of zeolite X having Si/Al.sub.2 molar ratios below 2.5.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: November 22, 1994
    Assignee: UOP
    Inventors: Alex J. Caglione, Thomas R. Cannan, Nanette Greenlay, Richard J. Hinchey
  • Patent number: 5276215
    Abstract: Disclosed is a one-step method for synthesis of alkylphenols which comprises reacting phenol with the corresponding olefin under adiabatic conditions in the presence of a zeolite catalyst, preferably a dealuminated Y-zeolite, a modified Y-zeolite, or a .beta.-zeolite.
    Type: Grant
    Filed: April 9, 1993
    Date of Patent: January 4, 1994
    Assignee: Texaco Chemical Company
    Inventors: John F. Knifton, Yu-Hwa E. Sheu, Pei-Shing Dai
  • Patent number: 5242677
    Abstract: Y-type zeolites with unit cell constants of less than 24.14 .ANG. are prepared by improving the method of dealumination and aluminum ion exchange. Zeolites with such low unit cell constants have not been known previously.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: September 7, 1993
    Assignee: PQ Corporation
    Inventors: David A. Cooper, Raymond P. Denkewicz, Elliot P. Hertzenberg
  • Patent number: 5238675
    Abstract: Zeolites containing gallium in their crystalline framework structure are prepared by treating a zeolite material with a reagent capable of replacing a part of the aluminum of the framework structure of the zeolite material with the gallium. The method is especially applicable for the preparation of faujasitic materials of the formulaM.sub.(x+y/n) [ALO.sub.2 ].sub.x [GaO.sub.2 ].sub.y [SiO.sub.2 ].sub.zwherein:M is a charge balancing ion and n is the oxidation state thereof,x, y and z are the respective numbers of tetrahedra represented respectively by AlO.sub.2, GaO.sub.2 and SiO.sub.2,x+y+z=192, for a said faujasitic structure with no missing tetrahedra,x+y is from 0.1 to 71 inclusive, andy is from 0.01 to 60 inclusive.
    Type: Grant
    Filed: April 9, 1991
    Date of Patent: August 24, 1993
    Assignee: Unilever Patent Holdings B.V.
    Inventors: David J. Rawlence, Khalid Karim, John Dwyer
  • Patent number: 5223240
    Abstract: An aqueous suspension of zeolite NaY is treated in with sodium hydroxide solution. The treated zeolite NaY is subsequently dealuminized with silicon tetrachloride.
    Type: Grant
    Filed: January 8, 1992
    Date of Patent: June 29, 1993
    Assignee: Degussa Aktiengesellschaft
    Inventors: Eckehart Roland, Peter Kleinschmit, Akos Kiss, Frank Heindl
  • Patent number: 5192520
    Abstract: An aluminosilicate gel containing an ST structuring agent whose composition is suitable for crystallization into a zeolite of the faujasite structural family is prepared. The gel then undergoes crystallization in order to form a zeolite precursor which consists of the zeolite containing the ST structuring agent in its cavities and channels, the zeolite being produced through the calcination of the precursor. The ST structuring agent consists of at least one compound from the alkylene polyoxides of formula (1) ##STR1## in which R and R', identical or different, each represents H or an alkyl radical in C.sub.1 to C.sub.4, X designates H or OH, m is equal to 2 or 3 and can differ from one pattern to another, and n is a number from 1 to 12. The zeolites thus obtained have a Si:Al ratio which is greater than 1 and which can go beyond 3, and show a cubic symmetry. The zeolites can be used, directly or after cation exchange, as adsorbants or as catalyst constituents.
    Type: Grant
    Filed: May 10, 1991
    Date of Patent: March 9, 1993
    Assignee: Societe National Elf Aquitaine
    Inventors: Francois Delprato, Jean-Louis Guth, Frederique Hoffner, Catherine Zivkov
  • Patent number: 5182243
    Abstract: A process for the reuse or recycling of FCC equilibrium catalysts is disclosed. The process involved treatment of a zeolite-containing equilibrium catalyst with clear seeds, a source of sodium oxide, a source of silica and water at elevated temperatures in order to destroy the Y originally present in the equilibrium catalyst and regrow zeolite Y in the pores of the matrix to a level no higher than 70 weight percent.
    Type: Grant
    Filed: November 1, 1991
    Date of Patent: January 26, 1993
    Assignee: Englehard Corporation
    Inventors: Stephen H. Brown, Roland von Ballmoos
  • Patent number: 5167942
    Abstract: The present disclosure relates to improved methods for the preparation of aluminum phosphate molecular sieves and faujasite-type zeolites having stably encapsulated multidentate metal chelate complexes. This is achieved through direct incorporation of a selected multidentate chelate complex into the molecular sieve or zeolite reaction admixture prior to crystallization, allowing the admixture to react under conditions appropriate for the selected molecular sieve or zeolite, followed by preparation of the resultant molecular sieve-metal chelate complex in a highly crystalline form.
    Type: Grant
    Filed: November 21, 1990
    Date of Patent: December 1, 1992
    Assignee: Board of Regents, The University of Texas System
    Inventors: Kenneth J. Balkus, Stanislaw Kowalak
  • Patent number: 5154904
    Abstract: Precipitated silica is mixed with a solution of caustic soda, water and sodium aluminate to form a mixture of the composition:12.+-.3 Na.sub.2 O:Al.sub.2 O.sub.3 :12.+-.3 SiO.sub.2 :200.+-.60 H.sub.2 O. This mixture was aged for 18-72 hours.
    Type: Grant
    Filed: October 28, 1986
    Date of Patent: October 13, 1992
    Assignee: Degussa Aktiengesellschaft
    Inventors: Peter Kleinschmit, Gangolf Kriechbaum, Hans Strack