Pattern Control Of Travel For A Forming Means (e.g., Depositing, Etc.) Patents (Class 425/375)
  • Patent number: 11993008
    Abstract: A method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure, the method comprising the steps of: providing at least one model of the three-dimensional article, lowering the support structure a predetermined distance and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, rotating the support structure the predetermined angle in a second direction opposite to the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations of the first powder layer, the at least one first energy beam source causing the first powder layer on the stationary support structure which is stationary to fuse in the selected locations according to the model to form first portions of the three-dimensional article.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: May 28, 2024
    Assignee: ARCAM AB
    Inventor: Calle Hellestam
  • Patent number: 11981824
    Abstract: In the present invention, a photocurable composition for a support material for an inkjet 3D printer comprises a water-soluble ethylenically unsaturated monomer containing an ionic group and a counter ion, and a water content is not more than 10 mass % in 100 mass % of the photocurable composition for a support material. It is preferably that the photocurable composition for a support material for an inkjet 3D printer further comprises a photopolymerization initiator.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: May 14, 2024
    Assignee: NIPPON SHOKUBAI CO., LTD.
    Inventors: Hirotaka Mizoguchi, Yasunori Tsujino
  • Patent number: 11980939
    Abstract: An electromagnet alignment system for in-situ alignment of a magnetic particulate material is provided. The magnetic particulate material is dispensed through an orifice of a dispensing nozzle used for 3D printing. The system has an electromagnet assembly having a coil. The coil is configured to generate a pulsed magnetic field having a target magnetic flux intensity upon energization of the coil when the magnetic particulate material is being heated and moved through the dispensing nozzle. As a result, the magnetic particulate material is at least partially aligned with respect to a direction by the pulsed magnetic field. The system further includes a power source for implementing the energization of the coil.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: May 14, 2024
    Assignee: UT-BATTELLE, LLC
    Inventors: Mariappan Parans Paranthaman, Brian K. Post, Brian C. Sales
  • Patent number: 11981076
    Abstract: A machine for additive manufacturing comprises a work top, a work area, a device for depositing a layer of powder onto the work area and a heat or energy source used to selectively consolidate a layer of powder, the device comprising a movable element for receiving powder moving relative to the work top and in the vicinity of the work area, a device for dispensing a bead of powder onto the movable element and a device for spreading the bead of powder. The movable element assuming the form of a translationally movable slide or the movable element rotationally moving around the work area, at least part of the upper surface of a movable element is located above the upper surface of the work top and/or at least part of the upper surface of a movable element is located below the upper surface of the work top.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: May 14, 2024
    Assignee: ADDUP
    Inventor: Jean-Baptiste Mottin
  • Patent number: 11969791
    Abstract: An additive manufacturing machine (10) comprises a working plane (18) comprising a working zone (20) allowing an overlay of different layers of powder to be received, and a powder dispensing device (32) comprising a powder intake (36) allowing powder to be delivered on top of the working plane. The powder dispensing device (32) comprises a tank (44) of powder mounted to move above the working plane (18) and that can be displaced to under the powder intake (36), the bottom part (45) of the tank (44) comprises a powder dispensing point (P1), and the powder dispensing device (32) comprises a control device (48) controlling the flow of powder via the powder dispensing point during a displacement of the tank. The tank (44) is mounted on a weighing sensor (68).
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: April 30, 2024
    Assignee: ADDUP
    Inventors: Albin Effernelli, Cedric Carlavan
  • Patent number: 11969943
    Abstract: A hot bed deformation tolerance structure for a large-sized continuous fiber high-temperature 3D printer is provided. Size changes caused by thermal expansion of a hot bed are compensated through motion coordination of a secured hot bed support assembly and a motion device, especially for an aluminum alloy material. A Z-direction motion structure of this structure is fixedly mounted with a frame and works at room temperature. A compensation motion module is fixedly mounted with a Z axis and incompletely secured with the hot bed support assembly, and works at room temperature with the Z axis. The hot bed support assembly is incompletely secured and partially in a high-temperature chamber, with a maximum working temperature of 300° C. The hot bed support assembly retains motion redundancy in a direction of thermal expansion deformation, tolerates thermal deformation through a linear motion module, and compensates for metal deformation through horizontal motion coordination.
    Type: Grant
    Filed: December 12, 2023
    Date of Patent: April 30, 2024
    Assignee: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS
    Inventors: Yiwei Chen, Jinghua Zheng, Zhongde Shan, Wenzhe Song, Congze Fan, Hao Zhang
  • Patent number: 11969914
    Abstract: The present disclosure relates to a scraper component of a three-dimensional printing device, which includes a scraper, a fixing frame, a pulley and a sliding rail, the scraper is installed on the fixing frame, and the pulley is set on at least one end of the fixing frame; the sliding rail has a horizontal first rail and a tilted and movable second rail, and a first end of the second rail is connected to the first rail and a second end is located on the first rail; when the pulley slides from a middle to an end of the first rail, the pulley enters the second rail from the first end and leaves the second rail from the second end then comes back to the first rail; when the pulley slides from an end to a middle of the first rail, the pulley passes through the second rail from below.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: April 30, 2024
    Assignee: PRISMLAB CHINA LTD.
    Inventor: Feng Hou
  • Patent number: 11951515
    Abstract: Techniques for depowdering in additive fabrication are provided. According to some aspects, techniques are provided that separate powder from parts by directing gas onto, or near to, the powder. While fragile green parts, such as green parts produced by binder jetting, may be fragile with respect to scraping or impacts, such parts may nonetheless be resistance to damage from directed gas, even if directed at a high pressure. Techniques for depowdering through directed application of gas may be automated, thereby mitigating challenges associated with manual depowdering operations.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: April 9, 2024
    Assignee: Desktop Metal, Inc.
    Inventors: Jamison Go, Michael Santorella, Jonah Samuel Myerberg, Matthew McCambridge, Alexander LeGendre, Joseph Gabay, Robert J. Nick, Michael Goldblatt
  • Patent number: 11951679
    Abstract: An additive manufacturing apparatus can include a stage configured to hold a component formed by one or more layers of resin. A support plate can be positioned above the stage. A radiant energy device can be positioned above the stage. The radiant energy device can be operable to generate and project energy in a predetermined pattern. A feed module can be configured to operably couple with a first end portion of a resin support and can be positioned upstream of the stage. A take-up module can be configured to operably couple with a second end portion of the resin support and can be positioned downstream of the stage.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: April 9, 2024
    Assignee: General Electric Company
    Inventors: Mary Kathryn Thompson, Xi Yang, Meredith Elissa Dubelman, William Joseph Steele, Trent William Muhlenkamp, John Thomas Sterle, Christopher David Barnhill
  • Patent number: 11945943
    Abstract: Methods of additive manufacturing, binder compositions for additive manufacturing, and articles produced by and/or associated with methods of additive manufacturing are generally described.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: April 2, 2024
    Assignee: Desktop Metal, Inc.
    Inventors: Christopher Benjamin Renner, Ilya L. Rushkin, Robert J. Nick, Emanuel M. Sachs
  • Patent number: 11945161
    Abstract: A combined electrospinning and microextrusion apparatus includes a robotic manipulator having a plurality of degrees of freedom, an end effector supported and movable by the robotic manipulator, a plurality of extruders housed on the end effector, each extruder having an interchangeable nozzle for extrusion of material, a working plane for deposition of extruded material, a pneumatic circuit supplying a fluid flow to the extruders for controlling extrusion of material, and an electric generator selectively activatable to apply a potential difference between the nozzles of the extruders and the working plane. The extruders are capable of operating selectively in microextrusion mode with inactive electric generator or in electrospinning mode with active electric generator, in an independent manner from each other.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: April 2, 2024
    Assignee: UNIVERSITA' DI PISA
    Inventors: Giovanni Vozzi, Aurora De Acutis, Carmelo De Maria, Guglielmo Pacetta
  • Patent number: 11939436
    Abstract: The invention concerns a method for producing a population of particles of a polymer, wherein the polymer is poly-butylene terephthalate (=PBT) or polyethylene terephthalate (=PET) or a copolymer comprising polybutylene terephthalate and/or polyethylene terephthalate, wherein the polymer is dissolved in an organic solvent which solvent is selected such that it completely solubilizes the polymer only at a temperature of the solvent above 100° C., wherein the method comprises heating the solvent and the solid polymer immersed in the solvent at least to a first temperature, at which first temperature the polymer completely dissolves, cooling the solution until a second temperature is reached at which second temperature clouding of the solution starts, further cooling the solution at a rate in a range of 0.05 ° C./min to 5° C./min or keeping the solution at the second temperature or at a temperature up to 3° C.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 26, 2024
    Assignee: Evonik Operations GmbH
    Inventors: Maximilian Alexander Dechet, Stephanie Kloos, Jochen Schmidt, Wolfgang Peukert
  • Patent number: 11919212
    Abstract: Embodiments herein relate to hollow profiles and methods of preparing the same for joining operations. A method herein can include placing a dam within a channel defined by the hollow profile, fitting a die block over an end of the channel, and injecting a flowable composition through an injection port into the channel. Another method can include defining a volume within a first member using at least one flow control device, filling the defined volume with a flowable polymeric composition, allowing the flowable polymeric composition to solidify to form a solid portion in the first member, and mechanically modifying the solid portion to define a joining surface suitable for joining to the second member. Other embodiments are also included herein.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: March 5, 2024
    Assignee: Andersen Corporation
    Inventors: Craig Michael Johnson, Jared Asa Shanholtzer, Justin Michael Depew, Paul Michael Allan Morris, William Peter Gengler, Jeffrey Lee Skeels, Justin John Reinke
  • Patent number: 11911953
    Abstract: An additive manufacturing device and method for delivering a flowable material from a nozzle of a programmable computer numeric control (CNC) machine, and compressing the flowable material with a compression roller. In one embodiment, the device includes a nozzle configured to deposit a flowable material on a surface; and a roller configured to compress the deposited flowable material, wherein the roller comprises: a flat center portion having a constant diameter; and opposed end portions, wherein each end portion extends outwardly from the flat center portion, and wherein a radially outermost surface of each end portion is angled relative a rotational axis of the roller.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: February 27, 2024
    Assignee: Thermwood Corporation
    Inventors: Kenneth J. Susnjara, Scott G. Vaal
  • Patent number: 11904539
    Abstract: A device for simultaneous 3D printing of a plurality of objects, including a plurality of printing heads and a plurality of object holders each associated with one of the printing heads, wherein: the printing heads and the object holders can be moved relative to one another along three translation axes in three spatial dimensions by at least three translation actuators; the printing heads are arranged on exactly one carrier element and the object holders are arranged on one or more object holder carriers, or the printing heads are arranged on a plurality of carrier elements and the object holders are arranged on exactly one object holder carrier; the printing heads are arranged on the one carrier element or the plurality of carrier elements at an offset along at least two of the three translation axes.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: February 20, 2024
    Assignee: NEOTECH AMT GMBH
    Inventors: Martin Hedges, Mirko Süttenbach
  • Patent number: 11904548
    Abstract: A varying a composition of build material used for a three dimensional (3D) part formed by a 3D printer are disclosed. In a system provided, a number of vessels for build material are included, wherein each vessel includes a feeder coupled to a conveying system. The conveying system conveys and blends build material from the vessels. A controller is configured to adjust a composition of the build material by adjusting an amount of material added from each of the vessels by controlling the feeder on each of the vessels.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: February 20, 2024
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: David R. Otis, Jr., Kevin E. Swier, Adam Peter Franks
  • Patent number: 11897198
    Abstract: A method of separating excess resin from at least one object, includes: (a) stereolithographically producing at least one object on at least one carrier platform, each carrier platform having a planar build surface to which at least one object is connected, each object carrying excess resin on a surface thereof; then (b) mounting each carrier platform to a rotor; (c) centrifugally separating excess resin from each object by spinning the rotor with each carrier platform connected thereto while each object remains connected to each carrier platform; and then (d) removing each carrier platform from the rotor with each object thereon, with excess resin separated therefrom.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: February 13, 2024
    Assignee: Carbon, Inc.
    Inventors: Michael Murillo, Gregory W. Dachs, II, Bob E. Feller
  • Patent number: 11872748
    Abstract: A method for the additive manufacturing of a composite component in which a fluid matrix material by way of an additive manufacture is introduced successively into a manufacturing device with the formation of an additively manufactured component. A reinforcing element is at least partly introduced into the fluid matrix material and/or arranged on the fluid matrix material.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: January 16, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Thomas Baranowski, Maik Broda, Markus Franzen, Pascal Rebmann
  • Patent number: 11872766
    Abstract: A method of additive manufacturing of a three-dimensional object is disclosed. The method comprises sequentially forming a plurality of layers each patterned according to the shape of a cross section of the object. In some embodiments, the formation of at least one of the layers comprises performing a raster scan to dispense at least a first building material composition, and a vector scan to dispense at least a second building material composition. The vector scan is optionally along a path selected to form at least one structure selected from the group consisting of (i) an elongated structure, (ii) a boundary structure at least partially surrounding an area filled with the first building material, and (iii) an inter-layer connecting structure.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: January 16, 2024
    Assignee: Stratasys Ltd.
    Inventor: Eduardo Napadensky
  • Patent number: 11872751
    Abstract: A three-dimensional (“3D”) printer. The 3D printer comprises a plurality of ejector conduits arranged in an array, each ejector conduit comprising a first end positioned to accept a print material, a second end comprising an ejector nozzle, and a passageway defined by an inner surface of the ejector conduit for allowing the print material to pass through the ejector conduit from the first end to the second end.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: January 16, 2024
    Assignee: XEROX CORPORATION
    Inventor: David K. Biegelsen
  • Patent number: 11865778
    Abstract: The disclosure is of and includes at least an apparatus, system and method for a print head for additive manufacturing. The apparatus, system and method may include at least two proximate hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing, each of the two hobs comprising two halves, wherein each of the hob halves comprises teeth that are offset with respect to the teeth of the opposing hob half; a motor capable of imparting a rotation to at least one of the two hobs, wherein the extrusion results from the rotation; and an interface to a hot end capable of outputting the print material filament after at least partial liquification to perform the additive manufacturing.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: January 9, 2024
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11865776
    Abstract: A 3D printer for printing consumable items, the 3D printer comprising: a print head arranged to position nozzles of a plurality of liquid dispensers to define a regular polygon around a first Z axis; an actuator device operable to dispense a portion of liquid from each liquid dispenser; a print bed comprising a print zone, the print zone comprising a plurality of print locations arranged to define a regular polygon around a second Z axis; a translation device operable to move the print bed relative to the print head along X and Y axes; and a rotation device operable to cause relative rotation between the print zone and the print head such that, with the first Z axis aligned with the second Z axis, the actuator is operable to dispense liquid from each liquid dispenser onto a respective print location and thereafter the rotation device is operable to cause relative rotation between the print zone and the print head to place each print location in registration with a different one of the nozzles.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: January 9, 2024
    Assignee: REM3DY HEALTH LIMITED
    Inventors: Melissa Snover Burton, Martyn Catchpole
  • Patent number: 11865788
    Abstract: An additive manufacturing method includes providing a polymeric material and changing a cooling rate of the polymeric material by adding a second material to the polymeric material. The additive manufacturing method also includes providing the polymeric material and the added second material to an additive manufacturing apparatus and depositing the polymeric material, having the changed cooling rate, with the additive manufacturing apparatus at a deposition rate that is based at least in part on the changed cooling rate of the polymeric material.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: January 9, 2024
    Assignee: Thermwood Corporation
    Inventor: Kenneth J. Susnjara
  • Patent number: 11858206
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be used to deposit a material layer onto a build surface of an additive manufacturing system. In some instances, the recoater assembly may include a powder entrainment system that trails behind a recoater blade of the recoater assembly relative to a direction of motion of the recoater blade across a build surface of the additive manufacturing system. The powder entrainment system may generate a flow of fluid across a portion of the build surface behind the recoater blade that at least temporarily entrains powder above a threshold height from the build surface to mitigate, or prevent, the formation of defects on the build surface with heights greater than the threshold height.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: January 2, 2024
    Assignee: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Patent number: 11845130
    Abstract: Systems and methods for rotational additive manufacturing are disclosed. An apparatus in accordance with an aspect of the present disclosure comprises a build floor, a depositor system configured to deposit a layer of powder onto the build floor, a motor system causing a rotational motion between the depositor system and the build floor, wherein the depositor system deposits the layer of powder during the rotational motion, a receptacle wall configured to contain the powder on the build floor, an energy beam source configured to apply an energy beam in an active area of the layer of powder to selectively fuse a portion of the powder in the active area to form a portion of a build piece and a gas flow system configured to provide a gas flow across the active area while the energy beam selectively fuses the portion of the layer of powder in the active area.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: December 19, 2023
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Michael Thomas Kenworthy, Samuel Noah Miller, Krzysztof Artysiewicz, Chor Yen Yap, Gregory S. Weaver
  • Patent number: 11833716
    Abstract: A method for producing a roofing detail part for sealing a roof element, the method including the steps of: (a) providing and/or obtaining a digital model of a roof element to be sealed; and (b) based on the digital model, producing a roofing detail part fitting on the outer shape of the roof element by additive manufacturing.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: December 5, 2023
    Assignee: SIKA TECHNOLOGY AG
    Inventors: Roy Z'rotz, Simon Schoenbrodt, Herbert Ackermann
  • Patent number: 11833820
    Abstract: A nozzle structure for discharging printing material onto a substrate is presented. The nozzle structure comprises a tubular member having a distal part that faces the printing plane when in operation and defining an elongated inner cavity along the tubular member for placement a filament printing material. The tubular member comprises light input ports on the proximal part thereof for directing light toward inner surfaces thereof. The tubular member has an elongated tube portion and a distal tip portion at the distal part thereof, configured and operable as a light guide trapping and guiding the input light along the tubular member in a general direction toward the distal part, thereby continuously transferring light field to distal regions of the elongated inner cavity. The distal tip portion is configured to allow the trapped light to escape towards the printing plane, thereby heating a location on the printing plane facing the nozzle.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: December 5, 2023
    Assignee: Laser Engineering & Development Itd.
    Inventors: Imre Czinkota, Gabor Molnar, Viktor Tabor, Robert Bobrovniczki, Peter Bajcsi
  • Patent number: 11826792
    Abstract: An apparatus and method for removing excess material, preferably a powder, from a cavity of a component, wherein the apparatus includes: a platform for retaining the component, preferably an additively manufactured component, a drive mechanism being coupled to the platform, wherein the drive mechanism is configured to rotate the component being retained by the platform independently around two orthogonal spatial directions and each with an unlimited angular deflection, an actuator for mechanically actuating the platform during a removal of the excess material, and a housing, defining a working space in which the excess material can be removed from the cavity, wherein the housing seals the working space against an environment, and wherein any electrical components for the drive mechanism are arranged out of the working space.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: November 28, 2023
    Assignee: SIEMENS ENERGY GLOBAL GMBH & CO. KG
    Inventor: Yaroslav Lebed
  • Patent number: 11766827
    Abstract: A three-dimensional shaped object manufacturing device includes a shaping table, layer forming portions configured to form a powder layer on the shaping table, a head 3 configured to discharge, from a nozzle, a liquid containing a binder to a shaping region of a three-dimensional shaped object in the powder layer, and a control unit configured to control a movement of the head with respect to the shaping table and a drive of the head by applying a voltage, in which the control unit performs control to, after the liquid is discharged to the shaping region, execute a flushing operation of discharging the liquid from the nozzle to a flushing position different from the shaping region, and set an applied voltage during the flushing operation higher than an applied voltage when the liquid is discharged to the shaping region.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: September 26, 2023
    Assignee: Seiko Epson Corporation
    Inventors: Eiji Okamoto, Akihiko Tsunoya
  • Patent number: 11752689
    Abstract: A method of printing a three-dimensional (3D) object and a support construction for the 3D object includes depositing a model material, layer-by-layer, on a fabrication platform, to print a first portion of the 3D object, and depositing a support material, layer-by-layer on the fabrication platform, to print the support construction, wherein, in a predetermined number of the deposited layers, the model material and the support material are deposited such that a gap is formed between a surface of the first portion of the 3D object and a surface of the support construction.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: September 12, 2023
    Assignee: STRATASYS LTD
    Inventors: Daniel Dikovsky, Eduardo Napadensky, Shai Hirsch, Evgeni Levin, Yoav Bressler
  • Patent number: 11752692
    Abstract: This disclosure describes three-dimensional printing kits, methods, and systems for three-dimensional printing with phosphorescent pigments. In one example, a three-dimensional printing kit can include a powder bed material and a low-tint fusing agent. The powder bed material can include polymer particles and phosphorescent pigment particles mixed with the polymer particles. The low-tint fusing agent can include water and an electromagnetic radiation absorber. The electromagnetic radiation absorber can absorb radiation energy and convert the absorbed radiation energy to heat.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: September 12, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Emre Hiro Discekici, Alexey S. Kabalnov, Graciela Emma Negri Jimenez, Shannon Reuben Woodruff
  • Patent number: 11745425
    Abstract: A method of additive manufacture is disclosed. The method may include restricting, by an enclosure, an exchange of gaseous matter between an interior of the enclosure and an exterior of the enclosure. The method may further include running multiple machines within the enclosure. Each of the machines may execute its own process of additive manufacture. While the machines are running, a gas management system may maintain gaseous oxygen within the enclosure at or below a limiting oxygen concentration for the interior.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: September 5, 2023
    Assignee: Seurat Technologies, Inc.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 11738513
    Abstract: Auxiliary material handling units for additive manufacturing (AM), AM methods, methods of handling auxiliary material of an AM system, active print head cleaning devices, feedstock container modules, and related systems are provided. An auxiliary material handling unit (AMHU) includes a material displacer having at least one entry port through which auxiliary material from an AM system is received, wherein the material displacer displaces the auxiliary material away from the at least one entry port. A method of handling auxiliary material of an AM system includes receiving auxiliary material from the AM system in a material displacer having at least one entry port; and, with the material displacer, displacing the auxiliary material away from the at least one entry port. Displaced auxiliary material may be processed with a material processing unit and/or collected in a collection reservoir. At least one sensor may provide feedback to a controller.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 29, 2023
    Assignee: MOSAIC MANUFACTURING LTD.
    Inventors: Mitchell Oliver Debora, Derek Alan Vogt
  • Patent number: 11731367
    Abstract: An additive manufacturing apparatus includes a stage configured to hold a component. A radiant energy device is operable to generate and project radiant energy toward the stage. An actuator is configured to change a relative position of the stage relative to the radiant energy device. A feed module is configured to support a feed roll of a resin support upstream of the stage about a feed mandrel. A first control device is operably coupled with the feed mandrel. A take-up module is configured to support a take-up roll of the resin support downstream of the stage about a take-up mandrel. A second control device is operably coupled with the take-up mandrel. A computing system is operably coupled with one or more sensors. The computing system is configured to provide commands to at least one of the first control device or the second control device to respectively rotate the first control device or the second control device to obtain a target tension on the resin support.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: August 22, 2023
    Assignee: General Electric Company
    Inventors: Zhen Liu, Trent William Muhlenkamp, Christopher David Barnhill
  • Patent number: 11724445
    Abstract: A method of making a three-dimensional object by additive manufacturing from a blended resin including (i) at least one light polymerizable first component and, (ii) at least one, or a plurality of, second solidifiable components that are different from said first component, the method including: providing a first resin and a second resin, where the resins produce three-dimensional objects having different mechanical properties from one another when all are produced under the same process conditions; mixing the first and second resins with one another to produce the blended resin, the blended resin producing a three-dimensional object having mechanical properties intermediate between that of objects produced by the first and second resins when all are produced under the same process conditions; and dispensing the blended resin to the build region of an additive manufacturing apparatus; and then optionally but preferably producing a three-dimensional object from the blended resin in the apparatus.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: August 15, 2023
    Assignee: Carbon, Inc.
    Inventors: Jason P. Rolland, Courtney F. Converse, Oshin Nazarian, Matthew Panzer
  • Patent number: 11724449
    Abstract: A 3D printer includes a multi-axis robot arm comprising a deposition end effector, a rotating adjustable print stage comprising a rotary unit and a mandrel, the rotating adjustable print stage configured to rotate the mandrel around a rotation axis, and a control unit. The control unit may be configured to move the robotic arm in a radial dimension and a longitudinal dimension with respect to the mandrel to position the deposition end effector with respect to the mandrel, rotate the mandrel with the rotary unit, and cause the deposition end effector to deposit constituent on the mandrel to form a 3D-printed construct.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: August 15, 2023
    Assignee: Advanced Solutions Life Sciences, LLC
    Inventors: Scott Douglas Cambron, Kyle Eli, Brandon Hanke
  • Patent number: 11712843
    Abstract: A binder jet printing apparatus (10), along with methods of its use, is provided. The binder jet printing apparatus (10) may include: a job box (18) having a actuatable build plate (46) therein; a supply box (54) having a bottom platform (56) that is actuatable within the supply box (54); a print system including at least one print head (32) connected to a binder source (38) and configured to apply a pattern of binder onto an exposed powder layer (42) over the build plate (46) of the job box (18); a recoat system (16) including a recoater configured to move from the supply box (54) to the job box (18) to transfer powder from the supply box (54) to the job box (18) so as to form a new powder layer (48) over the build plate (46) of the job box (18); and a cure system (14) configured to direct electromagnetic radiation onto the job box (18).
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: August 1, 2023
    Assignee: General Electric Company
    Inventors: Vadim Bromberg, Victor Wayne Fulton, Carlos H. Bonilla, Travis Gene Sands, Brian Harlow Farrell, Joseph Lucian Smolenski, Younkoo Jeong, Glen Charles Fedyk
  • Patent number: 11712846
    Abstract: In an example implementation, a method of operating a three-dimensional (3D) printing system includes forming a fused 3D object in the printing tray of a 3D printer and vibrating the tray to separate unfused material from the fused 3D object.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: August 1, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Charles Oppenheimer
  • Patent number: 11712840
    Abstract: An apparatus for additively manufacturing a three-dimensional object formed by successive layerwise selective irradiation and consolidation of build material layers by at least one energy beam in a build area of the apparatus is provided, along with methods thereof. The apparatus may comprise a first build material supply device configured to supply an amount of build material to a first build material application device; wherein the first build material application device is configured to apply an amount of build material in the build area of the apparatus; and a second build material supply device configured to supply an amount of build material to a second build material application device, wherein the second build material application device is configured to apply an amount of build material to the supply area of the first build material supply device.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: August 1, 2023
    Assignee: Concept Laser GmbH
    Inventor: Domenik Braunroth
  • Patent number: 11707887
    Abstract: A method of manufacturing a component for a sole structure of an article of footwear includes providing a printer having a platform, a first head that receives a first feed, and a second head that receives a second feed. The method further includes printing a base layer on the platform, with the base layer comprising a substrate material and defining a longitudinal axis. Additionally, the method includes printing a first fiber layer continuously on the base layer, with the first fiber layer defining a first fiber orientation that is disposed at a first angle relative to the longitudinal axis, and printing a second fiber layer continuously on the first fiber layer, the second fiber layer defining a second fiber orientation that is disposed at a second angle relative to the longitudinal axis. The first angle is different from the second angle.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: July 25, 2023
    Assignee: PUMA SE
    Inventor: Christopher Dunning
  • Patent number: 11707789
    Abstract: The disclosure provides machines for manufacturing three-dimensional components by selectively solidifying powdery build-up material with a process beam in a process chamber, and methods of making the machines. The machine includes a machine base frame, wherein the machine base frame has a machine frame and a supporting frame which is attachable thereto, wherein the supporting frame accommodates at least one process chamber or at least one construction cylinder, and at least one interface is formed between the supporting frame and the machine frame, by which interface the supporting frame is held with respect to the machine frame.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: July 25, 2023
    Assignee: TRUMPF SISMA S.R.L.
    Inventors: Guglielmo Cavalcabo, Alessio Guzzonato
  • Patent number: 11701813
    Abstract: The present invention generally relates to the printing of materials, using 3-dimensional printing and other printing techniques, including the use of one or more mixing nozzles, and/or multi-axis control over the translation and/or rotation of the print head or the substrate onto which materials are printed. In some embodiments, a material may be prepared by extruding material through print head comprising a nozzle, such as a microfluidic printing nozzle, which may be used to mix materials within the nozzle and direct the resulting product onto a substrate. The print head and/or the substrate may be configured to be translated and/or rotated, for example, using a computer or other controller, in order to control the deposition of material onto the substrate.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: July 18, 2023
    Assignee: Kornit Digital Technologies Ltd.
    Inventor: Travis Alexander Busbee
  • Patent number: 11697222
    Abstract: A method and system of additively-manufacturing a structure having a reinforced access opening includes printing, via an additive printing device having at least one printer head, a portion of the structure adjacent to a support surface. The portion of the structure is printed of a cementitious material, and the printed portion of the structure defines an access opening for the structure. Moreover, the method includes providing a void of the cementitious material at a top boundary of the access opening, placing one or more reinforcement members in the void such that the one or more reinforcement members extend across the void, and continuing to print the printed portion of the structure around the void to build up the structure. Thus, the method also includes backfilling the void with a backfill material to incorporate the one or more reinforcement members within the void into the printed portion of the structure.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: July 11, 2023
    Assignee: General Electric Company
    Inventors: Xiaopeng Li, Biao Fang, Pascal Meyer, Christopher James Kenny
  • Patent number: 11691335
    Abstract: The present invention relates to powder-layer three-dimensional printers (2) having a discrete supply hopper (340) and a recoater (20). The discrete supply hopper (340) is configured to transfer a build powder to the recoater (20) in a manner that enhances the uniformity of build powder layers that are dispensed from the recoater (20). In some embodiments, at least one of the discrete supply hopper and the powder hopper of the recoater is adapted to selectively contact the other, seal against the other, and/or have one partially inserted inside the other so as to diminish or prevent powder pluming during the transfer of build powder from the discrete supply hopper to the recoater.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: July 4, 2023
    Assignee: THE EXONE COMPANY
    Inventors: Jake Flick, Michael John McCoy, Joseph J. Bolt, Alec Hydock, Travis Maxwell Inks, Anthony S Dugan, Thomas Lizzi
  • Patent number: 11685116
    Abstract: The disclosure is of and includes at least an apparatus, system and method for a print head for additive manufacturing. The apparatus, system and method may include at least two proximate hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing, each of the two hobs comprising two halves, wherein each of the hob halves comprises teeth that are offset with respect to the teeth of the opposing hob half; a motor capable of imparting a rotation to at least one of the two hobs, wherein the extrusion results from the rotation; and an interface to a hot end capable of outputting the print material filament after at least partial liquification to perform the additive manufacturing.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: June 27, 2023
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11673325
    Abstract: The disclosure is of and includes at least an apparatus, system and method for a print head for additive manufacturing. The apparatus, system and method may include at least two proximate hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing, each of the two hobs comprising two halves, wherein each of the hob halves comprises teeth that are offset with respect to the teeth of the opposing hob half; a motor capable of imparting a rotation to at least one of the two hobs, wherein the extrusion results from the rotation; and an interface to a hot end capable of outputting the print material filament after at least partial liquification to perform the additive manufacturing.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: June 13, 2023
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11674241
    Abstract: Systems and methods can be used to produce fibers with external corrugations, internal corrugations, or both. These fibers can be used, for example, in hollow fiber membrane modules.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: June 13, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Seung-Hak Choi, Sarah N. Almahfoodh
  • Patent number: 11673296
    Abstract: Disclosed herein is a device (100) for making an object. The device (100) comprises a vessel (44) for receiving a radiation hardenable material (42). The device (100) comprises a fabrication platform assembly (7) comprising a fabrication platform (8) and having a first mode in which an orientation of the fabrication platform (8) is adjustable and a second mode in which the orientation of the fabrication platform (8) is fixed, and configured for positioning at the vessel (44) in the second mode to form a layer of the radiation hardenable material when so received between the fabrication platform (8) and a wall (46) of the vessel (44). The device (100) comprises a radiation source (48) arranged to illuminate the layer of radiation hardenable material when so formed to form one of a plurality of layers of the object.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: June 13, 2023
    Inventor: Justin Elsey
  • Patent number: 11673314
    Abstract: In one example, an apparatus for generating a three-dimensional object includes an energy source to apply energy to a layer of build material to cause a first portion of the layer to coalesce and solidify, an agent distributor to selectively deliver a cooling agent onto a second portion of the layer, and a controller to control the energy source to apply energy to the layer to cause the first portion to coalesce and solidify in a first pattern and to control the agent distributor to selectively deliver the cooling agent onto the second portion of the layer in a second pattern independent of the first pattern.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: June 13, 2023
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Krzysztof Nauka, Esteve Comas, Alejandro Manuel De Pena, Howard S. Tom, Hou T. Ng
  • Patent number: 11660812
    Abstract: A modular system for performing additive manufacturing of an object includes at least two additive manufacturing devices, each having a housing with two slots on lateral sides to accommodate a manufacturing tray; a printer head and axis system; and a movement mechanism. A control module is operatively coupled to each of the at least two additive manufacturing devices. The control module is configured to control the at least two additive manufacturing devices to arrange the manufacturing tray in a first of the at least two additive manufacturing devices; print a part of the object on the manufacturing tray arranged in the first additive manufacturing device; move the manufacturing tray having the partially manufactured object to a second of the at least two additive manufacturing devices; and print a remaining part of the object on the manufacturing tray to complete the additive manufacturing of the object.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: May 30, 2023
    Assignee: Brinter Oy
    Inventors: Tomi Kalpio, Marko Piira