With Use Of Condensation Nuclei Patents (Class 436/36)
  • Patent number: 8760397
    Abstract: A hand-held controller for operating a remote vehicle includes a controller body having right and left grips, a first set of input devices are disposed in a left control zone adjacent the left grip, and a second set of input devices are disposed in a right control zone adjacent the right grip. The first set of input devices includes a first analog joystick, a 4-way directional control, and a left rocker control. The second set of input devices includes a second analog joystick, an array of at least four buttons, and a right rocker control. The hand-held controller also includes a mode changer disposed on the controller body and configured to receive an input to change between two or more function modes. Each function mode assigns different functions to one or more of the input devices.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: June 24, 2014
    Assignee: iRobot Corporation
    Inventors: Michael Anthony Robbins, Samuel H. Kenyon, Roger Gerson, Travis Woodbury, Melissa N. Ledoux
  • Patent number: 8506369
    Abstract: Various systems, game controllers, and methods for simulating various objects such as weapons are provided. For example, a game controller may include a trigger, a processor within the body that receives a trigger signal when the trigger is activated by the user. The processor may communicate with a computer running a software program such as a gaming application, and an actuator coupled to the trigger, the actuator configured to output a haptic effect to the trigger in response to receiving a control signal from the processor. The game controller may simulate a gun and generate a recoil effect. In some embodiments, the recoil effect may be generated by impacting a moving mass from a discharge end of the gun to a handle end of the gun. In some embodiments, the recoil effect may be generated by using a body part of a user as a tether.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: August 13, 2013
    Assignee: Immersion Corporation
    Inventors: Danny A. Grant, Erin Ramsay, Ali Modarres, David M. Birnbaum, Juan Manuel Cruz-Hernandez, Robert W. Heubel, Hendrik Bartel
  • Patent number: 8460606
    Abstract: The invention relates to a reaction device which is used to study the behavior of a catalyst in the presence of reactants. The inventive device includes: various different mass flow regulators, which are used to supply a known controlled stream of gases, a pump which supplies the system with liquid reactants from a container, a hot box, wherein there have been placed a supply current evaporator and preheater, a valve which can be used to select the process path, a reactor into which the catalyst is introduced inside a furnace, a system which can be used to separate the liquid and gaseous products by cold condensation under pressure and which controls the pressure in the line of output gases, and a system for controlling the level in the decantation operation, the system being automated and computerized.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: June 11, 2013
    Assignee: Consejo Superior de Investigaciones Cientificas
    Inventors: Jose Prieto Barranco, Consuelo Goberna Selma
  • Patent number: 8222037
    Abstract: Various embodiments of the invention provides for systems and methods for multi-participant controller systems. Specifically, some embodiments of the invention enable two or more participants to take part in a multi-participant interactive software running on a computing system. In addition, some of these embodiments allow for multi-participant interactive software, such as a dance-oriented or music-based video game, to time-shift the scoring of inputs from each participant during an activity session.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: July 17, 2012
    Assignee: Performance Designed Products LLC
    Inventors: Scott Michael Terrell, Thomas John Roberts
  • Patent number: 8149402
    Abstract: The preferred embodiments of the invention is an optical system for a flow cytometer including a flow channel with an interrogation zone, and an illumination source that impinges the flow channel in the interrogation zone from a particular direction. The optical system preferably includes a lens system and a detection system. The lens system preferably includes multiple lens surfaces arranged around the flow channel and adapted to collect and collimate light from the interrogation zone. The detection system preferably includes multiple detectors adapted to detect light from the lens system. Each detector preferably includes a local filter that independently filters for specific wavelengths. Thus, the user may easily swap the filters in any order to achieve the same detection parameters.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: April 3, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventors: Collin A. Rich, Richard L. Fisher, Nathaniel C. Bair
  • Patent number: 8031340
    Abstract: An optical system for a flow cytometer having a flow channel with an interrogation zone and an illumination source that impinges the flow channel in the interrogation zone includes a lens system and a detection system. The lens system preferably includes at least two lens surfaces located on opposite sides of the flow channel and configured to collect and collimate light from the interrogation zone. The detection system, configured to detect light from the lens system, preferably includes first and second detectors, a first filter that passes a first wavelength of light and reflects a second wavelength of light, and a second filter that reflects the first wavelength of light and passes the second wavelength of light, wherein the first and second filters are aligned such that light reflected from the first filter passes into the second detector and light reflected from the second filter passes into the first detector.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: October 4, 2011
    Assignee: Accuri Cytometers, Inc.
    Inventors: Collin A. Rich, Nathaniel C. Bair
  • Patent number: 8030079
    Abstract: A hand-held video gaming device comprises a games console comprising a disc reader module configured to load a game stored on a disc; a printer module configured to print game information on print media, the printer module being hingedly mounted above the games console, and functioning as a pivotable cover for the game console; and a controller module releasably engaged with the printer module, and configured to communicate wirelessly with the games console to enable control of the games console.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: October 4, 2011
    Assignee: Silverbrook Research Pty Ltd
    Inventor: Kia Silverbrook
  • Patent number: 7852465
    Abstract: A system for monitoring non-volatile residue concentrations in ultra pure water includes a nebulizer for generating an aerosol composed of multiple water droplets, a heating element changing the aerosol to a suspension of residue particles, and a condensation particle counter to supersaturate the dried aerosol to cause droplet growth through condensation of a liquid onto the particles. The nebulizer incorporates a flow dividing structure that divides exiting waste water into a series of droplets. The droplets are counted to directly indicate a waste water flow rate and indirectly indicate an input flow rate of water supplied to the nebulizer. The condensation particle counter employs water as the condensing medium, avoiding the need for undesirable chemical formulations and enabling use of the ultra pure water itself as the condensing medium.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: December 14, 2010
    Assignee: Fluid Measurement Technologies, Inc.
    Inventors: David B. Blackford, Frederick R. Quant, Derek R. Oberreit
  • Publication number: 20080064109
    Abstract: A game system includes a game apparatus and a controller. The controller is furnished with an acceleration sensor for detecting accelerations in at least two axis directions. Game processing corresponding to the kind of an acceleration input by means of the controller is executed. For determining the kind, reference timing when acceleration in a first-axis direction is below a threshold value to take on a minimum value is detected. Then, it is determined whether or not an angle between acceleration change vectors before and after the reference timing is equal to or more than a predetermined angle. When the angle is not equal to or more than the predetermined angle, it is determined that the acceleration input is an acceleration input in any one of the two-axis directions, and when the angle is equal to or more than the predetermined angle, it is determined that the acceleration input is an acceleration input in a direction including the two-axis directions as components.
    Type: Application
    Filed: February 2, 2007
    Publication date: March 13, 2008
    Applicant: Nintendo Co., Ltd.
    Inventor: Yuichiro Okamura
  • Patent number: 7201879
    Abstract: An aerosol-into-liquid collector (ALC) for collecting gas-borne particles from a large volume of gas such as air into a small volume of liquid is described. The ALC uses a linear quadrupole to concentrate particles flowing in a gas and to help direct these concentrated particles toward a small volume of collection liquid so that these particles tend to combine with a small volume of collection liquid that can then be drawn from the ACL for further analysis. The particles in the gas are typically given a charge that is opposite to that of the charge imparted to the volume of collection liquid so that electrostatic forces help draw particles from the flowing gas into the small volume of liquid. The linear quadrupole focuses toward it axis particles that have the charge, mass and mobility to be stable in the linear quadrupole.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: April 10, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Steven Clyde Hill, Horn-Bond Lin
  • Patent number: 7201878
    Abstract: Aerosol particle analyzer (APA) for measuring an analyte in airborne particle is described. Airborne particles are first given an electrical charge and then drawn in air past an oppositely charged volume of an analysis liquid that exposed to the air at a small hole in a container, such as a capillary, that holds that analysis liquid. Electrostatic forces enhance the rate that the airborne particles collide with the small exposed volume of the analysis liquid in the hole. If the particles that collide with the analysis liquid contain the analyte, an optical property of the analysis liquid, such as the fluorescence, varies according to the amount of the analyte in the particles. This optical property is measured and the amount of analyte in the particles is determined from the measured optical property.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: April 10, 2007
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Horn-Bond Lin, Steven Clyde Hill
  • Patent number: 7153475
    Abstract: Aerosol particle analyzer (APA) for measuring the amount of analyte in airborne particle is described. The APA uses an analysis liquid. In most embodiments, this analysis liquid is chosen so that when it is mixed with the particles, an optical property of the analysis liquid (AL) varies according to the amount of the analyte in the particles. Airborne particles are drawn into the instrument, and detected using optical methods such as light scattering or laser-induced fluorescence. When a particle of interest is detected, a charged droplet of the analysis liquid (CDAL) is ejected so that it collides with the detected particle and moves into a horizontally oriented linear quadrupole that is in an airtight container, except for small orifices to let the CDAL enter and exit.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: December 26, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Steven Clyde Hill, Richard Kounai Chang, Jean-Pierre Wolf
  • Patent number: 7125518
    Abstract: Aerosol particle analyzer (APA) for measuring the amount of analyte in airborne particle is described. The APA uses an analysis liquid. When this analysis liquid is mixed with the particles, an optical property of the analysis liquid (CDAL) varies according to the amount of the analyte in the particles. A charged droplet of the analysis liquid is levitated. Airborne particles are drawn into the instrument and given a charge that is opposite that of the CDAL, and made to flow near the CDAL so that electrostatic forces greatly increase the probability that the CDAL and charged particles will combine. Then the CDAL is ejected into a horizontally oriented linear quadrupole that is in an airtight container, except for a small orifice to let the CDAL enter. The CDAL is levitated in a high humidity environment so that it evaporates slowly, so that there is time for the reaction between the analyte, if any, and the CDAL can take place, and so that the optical property, typically fluorescence, can be measured.
    Type: Grant
    Filed: February 14, 2004
    Date of Patent: October 24, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Steven Clyde Hill
  • Patent number: 6897070
    Abstract: Sensors and methods of monitoring for the presence of gas phase materials by detecting the formation of films based on the gas phase material are disclosed. Advantageously, some gas phase materials preferentially deposit on specific surfaces. As a result, selective detection of those gas phase materials can be obtained by detecting films deposited on those detection surfaces. Examples of gas phase materials that may be detected include RuO4, IrO4 and RhO4.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: May 24, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Guy T. Blalock
  • Patent number: 6881551
    Abstract: A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably three or four-layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer is overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited (third layer). An outer (fourth) layer is biocompatible.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: April 19, 2005
    Assignee: TheraSense, Inc.
    Inventors: Adam Heller, Michael V. Pishko
  • Publication number: 20030138958
    Abstract: Sensors and methods of monitoring for the presence of gas phase materials by detecting the formation of films based on the gas phase material are disclosed. Advantageously, some gas phase materials preferentially deposit on specific surfaces. As a result, selective detection of those gas phase materials can be obtained by detecting films deposited on those detection surfaces. Examples of gas phase materials that may be detected include RuO4, IrO4 and RhO4.
    Type: Application
    Filed: September 1, 1999
    Publication date: July 24, 2003
    Inventor: GUY T. BLALOCK
  • Patent number: 6511850
    Abstract: A self-adjusting, free-flowing pneumatic nebulizer interface is described for coupling fluid phase separation apparatus such as capillary electrophoresis apparatus or fluid-phase analyte delivery apparatus such as flow-injection analysis apparatus to gas phase, post-separation detection apparatus such as mass spectrometers, chemiluminescence detectors, or other similar gas phase detection apparatus. The interface combines the analytes with only the needed amount of sheath fluid to produce a combined flow whose magnitude automatically matches the self-aspiration rate of the pneumatic nebulizer interface, and which is combined with a gas flow to produce an aerosol. The resulting aerosol can then be either deposited directly on a surface, forwarded directly to a detection system or forwarded first to a conversion apparatus such as an oxidizer and the oxidized sample components are then forwarded to a detector.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: January 28, 2003
    Assignee: The Texas A&M University System
    Inventors: Gyula Vigh, Alex D. Sokolowski
  • Patent number: 6300135
    Abstract: This invention has for its object to provide a blood component deposition-preventing agent and a blood coagulation accelerator, which are substantially indifferent to blood coagulation activity and serum chemistry parameters and a plastic blood test ware and a blood test matrix which do not confound measured values. The invention relates to a blood component deposition-preventing agent comprising a random copolymer of a monomer component (a) giving a water-soluble homopolymer and a monomer component (b) giving a water-insoluble homopolymer, a blood coagulation accelerator comprising a substantially blood-insoluble antimicrobial composition comprising a carrier and, as supported thereon, an antimicrobial metal, and a blood test ware or matrix carrying them on its inside wall or surface.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: October 9, 2001
    Assignee: Sekisui Kagaku Kogyo Kabushiki Kaisha
    Inventors: Hironobu Isogawa, Hideo Anraku
  • Patent number: 6051189
    Abstract: A system and method for detection, identification, and monitoring of submicron sized particles, the method including the steps of collecting a sample, extracting existing submicron particles from the collected sample based on density, purifying the extracted submicron particles by concentrating the extracted submicron particles based on size, and, detecting and identifying the purified extracted submicron particles based on size and density thereby determining submicron particles present in the collected sample. The submicron particles detected and identified include viruses and virus-like agents such as prions. Thus, virus and virus-like agents can be detected and identified based only on their physical properties without the use of biochemical reagents or assays. A system for carrying out the method of detection and identification of these particles is also disclosed.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: April 18, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Charles H. Wick, David M. Anderson
  • Patent number: 5374396
    Abstract: The concentration of non-volatile residue in a test solvent is determined by generating multiple liquid droplets from a liquid stream including the solvent and ultrapure water. The droplets are dried to form a stream of multiple particles of the non-volatile residue. A supply of ultrapure deionized water is caused to flow continuously toward a non-volatile residue monitor, at a constant fluid flow rate. Upstream of the residue monitor, a syringe is provided for intermittently injecting a test solvent into the fluid stream. In one case, the solvent is injected for several minutes at a constant flow rate substantially less than that of the ultrapure water. A mixing valve, downstream of the point of solvent introduction, causes turbulent flow to thoroughly mix the solvent and water. In an alternative approach, a syringe is used to instantaneously inject solvent in the form of bursts.
    Type: Grant
    Filed: May 5, 1992
    Date of Patent: December 20, 1994
    Assignee: TSI Incorporated
    Inventors: David B. Blackford, Thomas A. Kerrick, David S. Ensor, Elizabeth A. Hill
  • Patent number: 5298967
    Abstract: In a system for measuring minute concentrations of dissolved solids in liquids, seed particles of a known diameter are mixed with the liquid and the mixture of the seed particles and the liquid is atomized into droplets of a known size. The droplets are dried to residue particles comprising the seed particle surrounded by a shell of the dissolved solid. The size of the residue particles are measured by passing the residue particles through a laser beam to scatter light to photodetectors so as to generate a pulse from each particle. The amplitude of the pulses will indicate the size of the residue particle from which the thickness of the shell and the concentration of the dissolved solid can be determined.
    Type: Grant
    Filed: June 2, 1992
    Date of Patent: March 29, 1994
    Assignee: Pacific Scientific Company
    Inventor: David Wells
  • Patent number: 5278626
    Abstract: A system for monitoring and analyzing impurities in a liquid by analyzing the non-volatile residue of droplets of the liquid includes a droplet generator for generating a stream of droplets of the liquid, a droplet inspection unit, a drop-on-demand unit for removing selected droplets from the stream of droplets, a heat exchanger for drying the droplets to provide non-volatile residue particles, and a particle size measurement unit. The droplet inspection unit determines the diameters of the droplets. A feedback arrangement from the droplet inspection unit controls droplet diameter by varying the droplet generation rate. The drop-on-demand unit removes a selected fraction of droplets from the droplet stream so as to reduce vapor loading in the heat exchanger and prevent agglomeration of droplets. The heat exchanger includes a first section for gradually increasing the temperature of the stream of droplets and a second section for maintaining the stream of droplets at the boiling temperature of the liquid.
    Type: Grant
    Filed: September 5, 1991
    Date of Patent: January 11, 1994
    Assignee: Amherst Process Instruments, Inc.
    Inventors: Trent A. Poole, Robert E. Carter
  • Patent number: 5264183
    Abstract: Disclosed are an apparatus and a method for carrying out and studying catalysis and catalyzed chemical reactions. Disclosed is a reactor with a catalyst zone, under vacuum, into which a very rapid pulse of reactant gas is pulsed. The products are analyzed by a real-time method of analysis, such as mass spectrometry. The apparatus and method can detect reaction intermediates and products, and can indicate their sequence of production.
    Type: Grant
    Filed: October 20, 1992
    Date of Patent: November 23, 1993
    Assignee: Monsanto Company
    Inventors: Jerry R. Ebner, John T. Gleaves
  • Patent number: 4952513
    Abstract: The present invention provides a general assay methodology suitable for the detection of organic analytes which are neither aldehydes nor ketones and for inorganic substances. The methodology utilizes prepared sensitized films of derivatizing agents and specific developer solutions for the selective and controlled formation of light scattering crystals whose presence serves as a qualitative and/or quantitative measure of the individual analyte of interest in the sample.
    Type: Grant
    Filed: October 24, 1988
    Date of Patent: August 28, 1990
    Assignee: Crystal Diagnostics, Inc.
    Inventor: Martin Koocher
  • Patent number: 4794086
    Abstract: Method and apparatus for the measurement of sub-ppm concentrations of impurities in liquids. The liquid to be measured for impurities is dispersed into uniform droplets of a precisely known diameter D in a gas stream, such as air, using for example, a vibratory orifice generator. The dispersed droplets evaporate in the gas stream to leave a residue particle having a diameter d, which can be measured for example by means of a laser light scattering spectrometer. The concentration by volume, C.sub.v, of the impurities can then be calculated according to the equation; C.sub.v =(d/D).sup.3.
    Type: Grant
    Filed: November 25, 1985
    Date of Patent: December 27, 1988
    Assignee: Liquid Air Corporation
    Inventors: Gerhard Kasper, Horng Y. Wen
  • Patent number: 4727024
    Abstract: A methodology for the detection of an analyte of interest in a fluid sample through the formation, growth, and optical detection of light scattering crystals. The methodology provides for direct assay and competitive binding assay protocols using pairs of specifically binding compositions and novel innovations in crystal growth technology to provide an analytical method which is useful in immunodiagnostic, environmental, and biochemical applications. The methodology and test kit apparatus provides rapid, reproducible, and accurate data and is sensitive for the detection of an analyte of interest present in the nanogram per milliliter range.
    Type: Grant
    Filed: May 12, 1986
    Date of Patent: February 23, 1988
    Inventors: Martin Koocher, Alan Burg