Monomer Polymerized In Vapor State In Presence Of Transition Metal Containing Catalyst Patents (Class 526/901)
  • Patent number: 11708434
    Abstract: This disclosure describes polymerization processes and processes for quenching polymerization reactions using reactive particulates, such as amorphous silica, as quenching agents, typically in solution or bulk polymerization processes.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: July 25, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jay L. Reimers, Yifeng Hong, John R. Hagadorn
  • Patent number: 11655316
    Abstract: Embodiments of the present disclosure are directed towards method for modifying a polymer flow index. As an example, a method for modifying a polymer flow index can include providing monomers to a polymerization reactor, providing a chromium catalyst to the polymerization reactor, and providing an active amount of a flow index modifier to the polymerization reactor, wherein the flow index modifier is selected from carbon dioxide, carbon monoxide, 2,4-hexadiene, and combinations thereof.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: May 23, 2023
    Assignee: Univation Technologies, LLC
    Inventors: Charles D. Lester, Mark G. Goode, Timothy R. Lynn, Kevin J. Cann, John H. Moorhouse, William Albert Matthews, Kefu Sun, Francois Alexandre
  • Patent number: 8742035
    Abstract: Embodiments of the invention provide a method of controlling a gas-phase polymerization process. The method includes determining a difference between a control variable of the polymerization process, such as the production rate, and the desired value of the control variable; adjusting or maintaining a first manipulated variable to at least partially compensate for the difference between the control variable and the desired value; and adjusting or maintaining a second manipulated variable to at least partially compensate for the effect of adjusting or maintaining the first manipulated variable.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: June 3, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Paul K. Samples, John R. Parrish, Ivan J. Hartley, Jeffrey B. Drabish
  • Patent number: 8653209
    Abstract: This invention relates to a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94(mole % ethylene incorporated)+100), when 10 to 60 mole % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mole % ethylene is present in the co-oligomer, and 3) X=(1.83*(mole % ethylene incorporated)?83), when 70 to 90 mole % ethylene is present in the co-oligomer. This invention also relates to a homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum. This invention also relates to a process of making homo-oligomer, comprising propylene, wherein the productivity is greater than 4500 g/mmol Hf (or Zr)/hour.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: February 18, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Donna J. Crowther, Andrew G. Narvaez, Jr.
  • Patent number: 8642711
    Abstract: Provided is a low-cost, highly active, environmentally friendly living radical polymerization method which does not require a radical initiator. Even if a catalyst is not used, a living radical polymerization method can be conducted by controlling the amount of the oxygen in the gaseous phase in the reaction vessel within a suitable range. A monomer having a radical-reactive unsaturated bond can be subjected to a radical polymerization reaction to obtain a polymer having narrow molecular weight distribution. The cost of the living radical polymerization can be remarkably reduced. The present invention eliminates the disadvantages of the conventional catalysts such as toxicity, low solubility, coloring/odor and the like, and is significantly more environmentally friendly and economically efficient than conventional living radical polymerization methods.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: February 4, 2014
    Assignee: Kyoto University
    Inventors: Atsushi Goto, Yoshinobu Tsujii, Kenichi Nakamura, Michihiro Kawai
  • Patent number: 8497330
    Abstract: Methods for gas phase olefin polymerization are provided. The method can include combining a spray dried catalyst system with a diluent to produce a catalyst slurry. The catalyst system can include a metallocene compound. Ethylene, a continuity additive, and the catalyst slurry can be introduced to a gas phase fluidized bed reactor. The reactor can be operated at conditions sufficient to produce a polyethylene. The spray dried catalyst system can have a catalyst productivity of at least 12,000 grams polyethylene per gram of the catalyst system.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: July 30, 2013
    Assignee: Univation Technologies, LLC
    Inventors: F. David Hussein, Kevin J. Cann, Ann M. Schoeb-Wolters, Phuong A. Cao, Bruce J. Savatsky, Eric J. Markel, Daniel P. Zilker, Jr., Garth R. Giesbrecht
  • Patent number: 8481658
    Abstract: A method for transitioning from a Ziegler-Natta to a Phillips catalyst system for the olefin polymerization reaction in one reactor, preferably a gas phase reactor, is described. The method comprises the steps of a) discontinuing a first olefin polymerization reaction performed in the presence of the Ziegler-Natta catalyst system; b) performing a second olefin polymerization reaction in the presence of a further catalyst system comprising catalyst components (A) and (B) producing, respectively, a first and a second polyolefin fraction, wherein the Mw of the first polyolefin fraction is less than the Mw of the second polyolefin fraction and the initial activity of catalyst component (A) exceeds the initial activity of catalyst component (B); and c) performing a third olefin polymerization reaction the presence of the Phillips catalyst system.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: July 9, 2013
    Assignee: Basell Polyolefine GmbH
    Inventors: Gerhardus Meier, Shahram Mihan
  • Patent number: 8431658
    Abstract: A process for introducing a catalyst powder based on a titanium compound supported on magnesium halide into a gas-phase olefin polymerization reactor, characterized in that it comprises: (a) storing the catalyst powder under an atmosphere of a liquid C3-C12 alkane; (b) withdrawing from step (a) a measured amount of said catalyst powder by means of a rotary valve; (c) transferring said metered amount of catalyst powder to a catalyst activation section by a continuous pick-up flow of a liquid C3-C12 alkane; (d) contacting the catalyst powder with a liquid phase comprising an organo-aluminum compound and optionally an external donor compound, at a temperature ranging from ?20° C. to 60° C.; (e) introducing the activated catalyst powder in one or more gas-phase olefin polymerization reactors, where a gaseous mixture comprising at least one alpha-olefin is subjected to polymerization.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: April 30, 2013
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Pietro Baita, Rainer Karer, Gerhardus Meier, Guido Funk, Gabriele Mei
  • Patent number: 8367787
    Abstract: Use of a metallocene compound of general formula Ind2R?MQ2 as a component of a catalyst system in producing polyethylene, wherein each Ind is the same or different and is indenyl or substituted indenyl; R? is a bridge which comprises a C1 to C4 alkylene radical, a dialkyl germanium or silicon or siloxane, alkyl phosphine or amine, which bridge is substituted or unsubstituted, M is a Group IV metal or vanadium and each Q is hydrocarbyl having 1 to 20 carbon atoms or halogen; and the ratio of meso to racemic forms of the metallocene in the catalyst system is at least 1:3. The metallocene may be supported. The ethylene may be polymerized in a reaction medium that is substantially free of any external comonomer, with comonomer being formed in situ. The produced polyethylene may have long chain branching. The produced polyethylene may be atactic.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: February 5, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Abbas Razavi, Liliane Peters
  • Patent number: 8354481
    Abstract: The present invention provides methods of controlling a gas-phase polymerization process. The method includes determining a difference between a control variable of the polymerization process, such as the production rate, and the desired value of the control variable; adjusting or maintaining a first manipulated variable to at least partially compensate for the difference between the control variable and the desired value; and adjusting or maintaining a second manipulated variable to at least partially compensate for the effect of adjusting or maintaining the first manipulated variable. The first and second manipulated variables can include process variables such as the fluidized bed weight, the catalyst concentration, the concentration of one or more monomers, the flow of one or more comonomers, the ratio of one comonomer to another comonomer, the activator concentration, the ratio of an activator to selectivity control agent, the concentration of a chain transfer agent, and the retardant concentration.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 15, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Paul K. Samples, John R. Parrish, Ivan J. Hartley, Jeffrey B. Drabish
  • Patent number: 8338548
    Abstract: A process for the gas-phase polymerization of one or more alpha-olefins in the presence of a polymerization catalyst, the process comprising: at least a polymerization step wherein the polymer particles flow downward in densified form under the action of gravity so as to form a densified polymer bed; metering an anti-fouling agent in said polymerization step by means of at least N feeding lines placed at different heights of said densified polymer bed, N being the integer number satisfying the equation N?(1+0.08·H), where H is the height (expressed in meters) of the polymer bed.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: December 25, 2012
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Antonio Mazzucco, Tiziana Caputo, Riccardo Rinaldi
  • Patent number: 8247342
    Abstract: A highly active supported chromium catalyst composition for ethylene and other olefins polymerization and also for ethylene copolymerization with efficient incorporation of comonomer, produces polymers with superior spherical morphology, improved bulk density and almost 0% fines. The catalyst composition component includes at least one chromium compound, mainly chromium acetylacetonate, or chromium hexaflouroacetonylacetonate, or chromium diethylmalonate. One magnesium compound, or aluminum compound, metal alkoxy compound and defined polymer particles mainly chloromethylated cross linked styrene-DVB copolymer or polyvinylchloride. The catalyst composition, when used in conjunction with an organoaluminum compound or a mixture of organoaluminum compounds, can be used for olefin polymerization to produce medium or high density polyethylene and copolymers of ethylene with alpha-olefins having about 3 to 18 carbon atoms.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: August 21, 2012
    Inventor: Abdullah Saad N. Al-Arifi
  • Patent number: 8148478
    Abstract: A process for the polymerization of olefins carried out in a gas-phase reactor having interconnected polymerization zones, where the growing polymer particles flow upward through a first polymerization zone (riser) under fast fluidization or transport conditions, leave said riser and enter a second polymerization zone (downcomer) through which they flow downward under the action of gravity, leave said downcomer and are reintroduced into the riser, a gas recycle stream being withdrawn from said first polymerization zone, subjected to cooling below its dew point and then returned to said first polymerization zone, the process being characterized in that said gas recycle stream is cooled at a temperature Tc ranging from 0.05° C. to 3° C. below its dew point.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: April 3, 2012
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Riccardo Rinaldi, Antonio Mazzucco, Enrico Balestra, Giuseppe Penzo, Maurizio Dorini, Gabriele Mei
  • Patent number: 8148481
    Abstract: A method for preparing a reactor for performance of a polymerization reaction, the method including providing at least one seed bed into the reactor; wherein the at least one seed bed includes at least one organometallic compound and polymer particles.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: April 3, 2012
    Assignee: Univation Technologies, LLC
    Inventors: F. David Hussein, Mark G. Goode, Michael E Muhle, David A. Yahn, Robert O. Hagerty
  • Patent number: 8093341
    Abstract: Embodiments of the invention provide a method of controlling a gas-phase polymerization process. The method includes determining a difference between a control variable of the polymerization process, such as the production rate, and the desired value of the control variable; adjusting or maintaining a first manipulated variable to at least partially compensate for the difference between the control variable and the desired value; and adjusting or maintaining a second manipulated variable to at least partially compensate for the effect of adjusting or maintaining the first manipulated variable.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: January 10, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: John R. Parrish, Paul K. Samples, Ivan J. Hartley, Jeffrey Brian Drabish
  • Patent number: 8084560
    Abstract: A process for the production of an ethylene alpha-olefin copolymer is disclosed, the process including polymerizing ethylene and at least one alpha-olefin by contacting the ethylene and the at least one alpha-olefin with a metallocene catalyst in at least one gas phase reactor at a reactor pressure of from 0.7 to 70 bar and a reactor temperature of from 20° C. to 150° C. to form an ethylene alpha-olefin copolymer. The resulting ethylene alpha-olefin copolymer may have a density D of 0.927 g/cc or less, a melt index (I2) of from 0.1 to 100 dg/min, a MWD of from 1.5 to 5.0. The resulting ethylene alpha-olefin copolymer may also have a peak melting temperature Tmax second melt satisfying the following relation: Tmax second melt>D*398?245.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: December 27, 2011
    Assignee: Univation Technologies, LLC
    Inventors: Rainer Kolb, Agapios K. Agapiou, James M. Farley, Eric J. Markel, Bruce J. Savatsky, Christopher R. Davey, Richard B. Pannell
  • Patent number: 8084557
    Abstract: A continuous gas-phase process for the polymerization of alpha-olefins, in particular ethylene, comprising passing an alpha-olefin monomer stream through an oil filter in order to reduce the amount of oil to less than 8 ppm, and polymerizing the thus purified monomer feed in gas-phase reactor; the reduction of the amount of oil improves the operability of the plant over time.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: December 27, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Manfred Hecker, Markus Schopf, Axel Hamann, Paulus-Petrus Maria de Lange
  • Patent number: 8030390
    Abstract: A rubber composition having (A) an elastomer component in which the primary elastomer constituent is an ethylene-propylene elastomer polymerized in the gas phase with a metallocene catalyst and having a molecular weight of at least about 250,000; (B) a silicon-modified olefinic elastomer in an amount of from about 5 to about 50 parts per hundred parts of the elastomer component; (C) ground mica in an amount of from about 2.5 to about 30 parts per hundred parts of the elastomer component; and (D) a peroxide curative. The composition may be used in a vibration isolator which may be used in a belt drive system.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: October 4, 2011
    Assignee: The Gates Corporation
    Inventors: Yuding Feng, Kathy Lambrinos, Yahya Hodjat
  • Patent number: 7981982
    Abstract: A process for the preparation of a propylene copolymer composition having a Flexural modulus lower than 500 MPa, a total ethylene content higher than 9% and a Xylene soluble fraction at room temperature higher than 20% comprising at least one polymerization step carried out in a gas-phase polymerization reactor comprising at least two interconnected polymerization zones said process being characterized by the fact that at least 30% by weight of said xylene soluble fraction is produced in the polymerization step carried out in a gas-phase polymerization reactor comprising at least two interconnected polymerization zones.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: July 19, 2011
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Camillo Cagnani, Enrico Beccarini, Claudio Cavalieri
  • Patent number: 7964677
    Abstract: Method of changing from a polymerization using a first catalyst to a polymerization using a second catalyst which is incompatible with the first catalyst in a gas-phase reactor, which comprises the steps a) stopping of the polymerization reaction using the first catalyst, b) flushing of the reactor under polymerization conditions with at least one deactivating agent comprising a volatile constituent and a nonvolatile constituent in a weight ratio of from 0.1 to 1000, c) introduction of the second catalyst into the reactor and d) continuation of the polymerization using the second catalyst.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: June 21, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Rainer Karer
  • Patent number: 7906599
    Abstract: Disclosed is a novel transition metal compound which is used for forming a metallocene catalyst for olefin polymerization. Specifically disclosed is a novel transition metal compound represented by the general formula below which enables to form a metallocene catalyst that has a balanced reactivity with ethylene and a comonomer selected from ?-olefins having 3-20 carbon atoms and enables to produce an ?-olefin polymer having a high molecular weight. Also specifically disclosed are a catalyst for olefin polymerization containing such a transition metal compound, and a method for producing a propylene/ethylene-?-olefin block copolymer wherein such a catalyst is used.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: March 15, 2011
    Assignee: Japan Polypropylene Corporation
    Inventors: Hisashi Ohtaki, Naoshi Iwama, Masami Kashimoto, Tomohiro Kato, Tsutomu Ushioda
  • Patent number: 7875685
    Abstract: Apparatus and methods for gas phase polymerization are provided. The method can include polymerizing one or more olefins at gas phase conditions in a reactor comprising one or more process exposed surfaces in the presence of a catalyst system; and treating at least a portion of the one or more process exposed surfaces prior to injecting the catalyst system to reduce the number of surface hydroxyls or access of the catalyst system to the surface hydroxyls on the process exposed surfaces.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: January 25, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kevin B. Stavens, Matthew W. Holtcamp, Gary D. Mohr, William A. Lamberti
  • Patent number: 7858718
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-aryl-8-anilinoquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: December 28, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko, Michael W. Lynch
  • Patent number: 7858719
    Abstract: The present invention relates to a gas phase process for polymerizing one or more hydrocarbon monomer(s) in the presence of a catalyst system and a fluorinated hydrocarbon, where the fluorinated hydrocarbon is present at a partial pressure of 6.9 to 348 kPa in the reactor and the reactor temperature is from 30 to 120° C.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: December 28, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert Olds Hagerty, Kevin B. Stavens, Randall B. Laird, Michael F. McDonald, Pradeep P. Shirodkar
  • Patent number: 7847036
    Abstract: A method for controlling a transition from an initial polymerization reaction to a target polymerization reaction in a manner that reduces significantly the amount of off-grade product having excessively low density produced during the transition, including steps of: during the transition, maintaining a first one of a concentration ratio and a feed ratio at an at least substantially constant value while implementing process changes in an effort to bring produced polymer into compliance with a target specification set and monitoring (without controlling) the other one of the concentration ratio and the feed ratio to generate first data; and during the transition, determining from the first data whether polymer having excessively low density is likely to be produced during the transition, and upon determining that polymer having excessively low density is likely to be produced during the transition, maintaining during the remaining portion of the transition the other ratio at a value that is at least substantia
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: December 7, 2010
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Daniel P. Zilker, Jr.
  • Patent number: 7834107
    Abstract: Process for preparing polyolefins having high molecular weights in the presence of a catalyst comprising an organic transition metal compound in a gas-phase fluidized-bed reactor, where the polyolefins prepared have a melt flow rate at 2.16 kg and 190° C. in accordance with ISO 1133 of less than 4 g/10 min. According to the present invention, a start-up phase during which a polyolefin having an increased melt flow rate of above 4 g/10 min is produced for a transitional period is provided. In this way, trouble-free start-up of the reactor is ensured even in the case of polymer products having a high molecular weight and a melt flow rate below 4 g/10 min and even when using catalysts based on organic transition metal compounds, in particular metallocene catalysts.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: November 16, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Alexander Köppl, Rainer Karer, Ulrich Nieken
  • Patent number: 7799876
    Abstract: A method for controlling sheeting in a gas phase reactor that includes producing a polyolefin with at least one metallocene catalyst and at least one static control agent in at least one gas phase reactor, measuring entrainment static using a static probe, and adjusting the concentration of the static control agent in response to changes in the measured entrainment static is disclosed.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: September 21, 2010
    Assignee: Univation Technologies, LLC
    Inventors: Eric J. Markel, Robert O. Hagerty, F. David Hussein, Michael E. Muhle, Richard B. Pannell
  • Patent number: 7790816
    Abstract: This invention relates to a process for maintaining heat transfer capacity of a cycle cooler while polymerizing olefin(s) in the presence of catalyst and a carboxylate metal salt by controlling the amount of carboxylate metal salt present in the reaction system. In particular, the invention relates to maintaining a cycle cooler performance parameter substantially constant while polymerizing olefin(s) in the presence of a carboxylate metal salt and a conventional-type transition metal polymerization catalyst compound, or a metallocene-type polymerization catalyst compound. This invention further relates to a process wherein the cycle cooler performance parameter is a heat transfer capacity of the cycle cooler, a pressure drop across the cooler, or a cooler approach temperature of a cycle cooler.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: September 7, 2010
    Assignee: Univation Technologies, LLC
    Inventors: Eric J. Markel, Agapios K. Agapiou
  • Patent number: 7763685
    Abstract: A method of discharging polymer from a continuously operated polymerization reactor, wherein at least a monomer is polymerized to form polymer particles, the method comprising adjusting the discharge rate of the polymer particles by means of a piston valve having a piston element connected to an actuator, said actuator being able to modulate the piston stroke inside said piston valve.
    Type: Grant
    Filed: July 4, 2005
    Date of Patent: July 27, 2010
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Luciano Michielin, Maurizio Dorini, Giuseppe Penzo, Riccardo Rinaldi
  • Patent number: 7739217
    Abstract: One exemplary method for message suppression comprises: providing first and second rules, each having one or more preconditions and a conclusion, wherein the first rule also has a suppressed-by attribute and at least one of the second preconditions is suppressing; evaluating the one or more first and second preconditions; identifying the first rule as true or false; displaying the message of the second rule if all of the second preconditions are met; identifying the first rule as suppressed if the second rule is named in the suppressed-by attribute; and inhibiting the message display of the suppressed rule or routing the message to second display. The system can comprise: a database containing knowledge of the production unit; a user interface, and at least one precondition, a suppressed by attribute, and one or more rules each having a conclusion and at least one suppressing precondition; an inference engine; and a display.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: June 15, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Bohumil Vaclav Kral, David Jack Sandell
  • Patent number: 7714082
    Abstract: A process for increasing a granular particle density of a polymeric product using at least one particle density promoting agent is described. The process includes passing a gaseous stream comprising at least one monomer through a fluidized bed reactor in the presence of a catalyst to form a polymeric product having a first granular particle density of less than or equal to about 850 kg/m3, contacting the polymeric product with at least one particle density promoting agent to increase the granular particle density of the polymeric product by at least 2%, withdrawing the polymeric product having an increased granular particle density and a recycle stream comprised of unreacted monomers, and cooling and reintroducing the recycle stream into the fluidized bed reactor with sufficient additional monomer to replace the monomer polymerized and withdrawn as the polymeric product.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: May 11, 2010
    Assignee: Univation Technologies, LLC
    Inventors: Ping P. Cai, William A. Matthews
  • Patent number: 7705095
    Abstract: A process for the polymerisation of olefin monomers selected from (a) ethylene, (b) propylene (c) mixtures of ethylene and propylene and (d) mixtures of (a), (b) or (c) with one or more other alpha-olefins is performed in a polymerisation reactor in the presence of a supported polymerisation catalyst characterised in that prior to injection into the reactor said supported polymerisation catalyst in the form of a powder is contacted with an inert hydrocarbon liquid in a quantity sufficient to maintain said catalyst in powder form. The preferred inert hydrocarbon liquid is hexane. The supported polymerisation catalyst is preferably a supported metallocene catalyst. According to the process of the prescrit invention the level of fines associated with the polymer products is reduced in particular the level of fines having a diameter<125 ?m and microfines of diameter<50 ?m.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: April 27, 2010
    Assignee: Ineos Europe Limited
    Inventors: Brian Stephen Kimberley, Gerard Lacane, Sergio Mastroianni
  • Patent number: 7696289
    Abstract: The present invention relates to a continuous gas phase process comprising passing a recycle stream through a fluidized bed in a gas phase fluidized bed reactor, wherein the recycle stream comprises a low molecular weight dew point increasing component and a high molecular weight component, polymerizing an alpha-olefin monomer in the presence of a catalyst, and controlling an amount of the low molecular weight dew point increasing component in the recycle stream such that a dew point approach temperature of the recycle stream is less than the dew point approach temperature when operating with the higher molecular weight dew point increasing component alone.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: April 13, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: D. Brett Fischbuch, Robert O. Hagerty, Sandy C. Hinds, Douglas R. Holroyd, Ai Vey Ng, Diwaker Singh
  • Patent number: 7687588
    Abstract: A process for the gas-phase polymerization of ?-olefÊns CH2?CHR, where R is hydrogen or a hydrocarbon radical having 1-12 carbon atoms, carried out in a first and a second interconnected polymerization zones, wherein the growing polymer particles flow through the first of said polymerization zones (riser) under fast fluidization conditions, leave said riser and enter the second of said polymerization zones (downcomer) through which they flow downward in a densified form, leave said downcomer and are reintroduced into said riser, in which process: (a) the gas mixture present in the riser is totally or partially prevented from entering the downcomer, and (b) the gaseous composition inside a portion of the downcomer is maintained substantially similar to the gaseous composition reacting in the riser.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: March 30, 2010
    Assignee: Basel Poliolefine Italia s.r.l.
    Inventors: Gabriele Mei, Joachim T. M. Pater, Gerben Meier, Pietro Baita
  • Patent number: 7671151
    Abstract: A process for making polyethylene having an uncommon but valuable balance of broad molecular weight distribution and a low level of long-chain branching is disclosed. The process comprises polymerizing ethylene in a single reactor in the presence of an ?-olefin and a catalyst comprising an activator and a supported dialkylsilyl-bridged bis(indeno[1,2-b]indolyl)zirconium complex. The polyethylene, which has an Mw/Mn greater than 10 and a viscosity enhancement factor (VEF) of less than 2.5, is valuable for making blown films.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: March 2, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Stephen M. Imfeld
  • Patent number: 7652109
    Abstract: The present invention relates to the use of an additive for improving the flowability of fines and their reintroduction into a process for the continuous gas-phase (co-) polymerisation of olefins in a fluidized bed or sub-fluidized bed reactor.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: January 26, 2010
    Assignee: Ineos Europe Limited
    Inventors: Willy Lemesle, Renaud Viguier
  • Patent number: 7645841
    Abstract: Techniques are provided for the prevention of reactor fouls in polymerization reactors. A technique is provided for limiting polymer particle size to prevent or limit the occurrence of reactor fouls associated with large polymer particles. A technique is also provided for measuring reactor temperature at one or more local hot spots of the reactor and for controlling the polymerization reaction based upon these temperature measurements. In particular, control of the reaction may be based on the hottest temperature, such that the hottest temperature in the reactor is maintained within the reactor fouling curve. A technique is also discussed for predicting reactor fouls by using statistical analyses, such as periodogram analysis, to identify leading indicators of impending fouls. Preventative measures may be performed upon identification of such a leading indicator. In addition, the statistical analyses may be used to identify catalysts having less propensity to foul.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: January 12, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Benjamin M. Shaw, John D. Hottovy, Dale A. Zellers
  • Patent number: 7629422
    Abstract: Embodiments of our invention relate to processes for transitioning among polymerization catalyst systems including processes for transitioning among olefin polymerization reactions using Ziegler-Natta catalysts systems and chromium-based catalyst systems. Among embodiments contemplated are a method of transitioning from a first catalyst to a second catalyst in an olefin polymerization reactor, comprising: adding to the reactor a deactivating agent (DA) selected from one of carbon monoxide, carbon dioxide, or combinations thereof; adding to the reactor a cocatalyst adsorbing agent (CAA), comprising an inorganic oxide selected from one of silica, alumina or combinations thereof; wherein the first catalyst comprises at least one conventional Ziegler-Natta catalyst, and a cocatalyst, wherein the second catalyst comprises at least one chromium-based catalyst, wherein the reactor is a gas-phase, fluidized bed reactor, and wherein the CAA is substantially free of transition metals.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: December 8, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Mark G. Goode, Kevin J. Cann, F. David Hussein, Robert L. Santana, David C. Schutz, Agapios K. Agapiou
  • Patent number: 7625987
    Abstract: A process for controlling a continuous gas phase exothermic process in a reactor comprising: (i) effecting a gas phase exothermic reaction under a set of operating conditions in the presence of a cooling agent, the cooling agent having a pre-selected concentration and feed rate of an induced cooling agent; (ii) determining a maximum production rate (I) without regard to limitations due to the cooling agent under the operating conditions; (iii) determining a maximum production rate (II) with regard to limitations due to the cooling agent under the operating conditions; (iv) calculating an optimal concentration of the induced cooling agent such that the difference between (I) and (II) is minimized; and (v) adjusting the feed rate of the induced cooling agent to achieve the concentration value calculated in (iv).
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: December 1, 2009
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John R. Parrish, Glenn A. Lambert, Daniel N. Thomas
  • Patent number: 7615597
    Abstract: A process for producing a polymer of ethylene containing from 0.1 to 99% by mol of one or more derived units of alpha-olefins and optionally from 0 to 5% by mol polyene, comprising contacting ethylene, one or more alpha-olefins and optionally said polyene, in the presence of a catalyst system obtainable by contacting: a) a metallocene compound of formula (I): wherein M is zirconium, hafnium or titanium; X, is a hydrogen atom, a halogen atom, or a hydrocarbon group; R1 is a hydrocarbon group; R2, R3, R4 and R5 are hydrogen atoms, or hydrocarbon groups; R6 is a hydrocarbon group; L is a divalent bridging group, and T is a divalent radical of formula (II) or (III): wherein R8 and R9 are hydrogen or hydrocarbon groups; and b) an alumoxane or a compound capable of forming an alkyl metallocene cation.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: November 10, 2009
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Anna Fait, Nicoletta Mascellani
  • Patent number: 7588735
    Abstract: A process of producing polyethylene, the process comprising copolymerizing ethylene and an alpha-olefinic comonomer comprising from 3 to 8 carbon atoms in the presence of a chromium-based catalyst in a main polymerization reactor and, in a gas-phase preliminary reactor upstream of the main polymerization reactor, chemically treating the chromium-based catalyst with at least one treatment agent prior to introduction of the catalyst into the main polymerization reactor and releasing from the preliminary reactor waste gases produced during the chemical treatment.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: September 15, 2009
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Guy Debras
  • Patent number: 7582710
    Abstract: An improved process for the polymerization of olefin monomer selected from (a) ethylene, (b) propylene, (c) mixtures of ethylene and propylene and (d) mixtures of (a), (b) or (c) with one or more alpha-olefins in a fluidized bed gas phase reactor, said process comprising passing a gaseous mixture of said olefin monomers(s) through the fluidized bed under effective polymerization conditions to provide a polymer product containing unreacted monomer(s) and a gaseous effluent stream comprising unreacted monomer(s), removing the polymer product to a degassing vessel, recycling a first portion of the gaseous effluent stream to the fluidized bed and passing a second portion of the gaseous effluent stream to counter currently contact the polymer product in said degassing vessel to produce a polymer product having a reduced amount of unreacted monomer(s), characterized in that the improvements to the process comprise: (i) removing heavy hydrocarbons from the second portion of the effluent stream and returning said hyd
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: September 1, 2009
    Assignee: Ineos Europe Limited
    Inventors: Andrew David Bell, David Andrew Fargie, David Edward Noble, Michael Bernard Power, Iain David Ross
  • Patent number: 7531606
    Abstract: Disclosed herein is a method of operating a polymerization reactor for a polymerization reaction comprising modifying a recycle gas composition to increase the heat capacity of the recycle gas wherein the recycle gas composition is modified by reducing or eliminating the nitrogen concentration in the recycle gas. In an embodiment, the nitrogen concentration is reduced or eliminated by reducing or eliminating one or more nitrogen input sources to the polymerization reactor and replacing the nitrogen with an alternate inert fluid (a gas or liquid that is inert to the catalyst and reactants). The alternate inert fluid has a higher heat capacity and a higher molecular weight than nitrogen. In an embodiment, the nitrogen utilized to convey a catalyst into the polymerization reactor is replaced with an alternate inert fluid. In an embodiment, the alternate inert fluid is ethane, propane, isobutane, or combinations thereof.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: May 12, 2009
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Gregory G. Hendrickson
  • Patent number: 7511109
    Abstract: A method for producing rotomoulding polyethylene by fluidized bed gas phase polymerisation of ethylene and the improved rotomoulding polyethylene obtainable by the process.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: March 31, 2009
    Assignee: Ineos Europe Limited
    Inventors: Jacques Arnoux, Isabelle Cermelli, Estelle Meurice, Jean-Loic Selo
  • Patent number: 7507780
    Abstract: The present invention relates to a continuous gas phase process comprising polymerizing one or more hydrocarbon monomer(s) in a fluidized bed reactor in the presence of a Ziegler-Natta-type catalyst system and a condensable fluid for a period of at least 12 hours where the bed temperature is less than the Critical Temperature and the dew point temperature of the gas composition in the reactor is within 25° C. of the bed temperature.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: March 24, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Robert O. Hagerty, Kevin B. Stavens, Marc L. DeChellis, D. Brett Fischbuch, James M. Farley
  • Patent number: 7482410
    Abstract: Processes for reducing the ultra high molecular weight polymeric material content of a high density polyethylene produced with a bis-triarylsilyl chromate catalyst system are provided. Processes for reducing the gel content of articles produced from high density polyethylene are also provided. The gel content of the articles is reduced by using the high density polyethylene with reduced ultra high molecular weight polymeric material content to produce the articles. The processes described reduce the content of ultra high molecular weight polymeric material in comparison to conventional high density polyethylene by introducing at least one catalyst deactivator into a recycle gas line containing a recycle gas stream associated with the fluidized bed reactor. The at least one catalyst deactivator has a boiling point lower than the maximum temperature within the recycle gas line.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: January 27, 2009
    Assignees: ExxonMobil Chemical Patents Inc., Saudi Basic Industries Corporation, Saudi Yanbu Petrochemical Company
    Inventor: D. Brett Fischbuch
  • Patent number: 7482411
    Abstract: A continuous process for the olefin polymerization in a fluidized bed reactor, said process comprising continuously passing a gaseous stream comprising one or more ?-olefin monomers through the fluidized bed in the presence of a polymerization catalyst under reactive conditions, withdrawing polymeric product and unreacted fluids from the reactor, cooling part of said unreacted fluids below the dew point to form a two-phase mixture of gas and condensed liquid and reintroducing said two-phase mixture into the reactor, the process being characterized in that said two-phase mixture is reintroduced under the distribution plate of the reactor so that a part of condensed liquid is separated from the gas and is successively fed above the fluidized bed through an external pipe connecting the bottom of the reactor to a point situated above the upper limit of the fluidized bed of polymer particles.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: January 27, 2009
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Guiseppe Penzo, Gabriele Mei, Gerben Meier
  • Patent number: 7476715
    Abstract: The use of high activity “Single Site” polymerization catalysts often causes the fouling of polymerization reactors. The problem is particularly acute with gas phase polymerizations. While not wishing to be bound by theory it is believed that the fouling is initiated by the buildup of static charges in the reactor. The use of anti-static agents mitigates this problem, but typical antistatic agents contain polar species, which can deactivate the polymerization catalyst. We have now discovered that the use of a porous metal oxide support allows large levels of a selected antistatic agent to be used in a manner that reduces static/fouling problems in highly active polymerization catalysts.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: January 13, 2009
    Assignees: Nova Chemicals(International) S.A., Ineos Europe Limited
    Inventors: Ian McKay, Dusan Jeremic, Paul Mesquita, Grant Berent Jacobsen, Sergio Mastroianni
  • Patent number: 7470759
    Abstract: A method of producing a polymer comprising contacting in a reaction zone under conditions suitable for polymerization of an alpha-olefin monomer with a metallocene catalyst having at least three asymmetric centers, and recovering an alpha-olefin polymer from the reaction zone. A method of polymerizing propylene comprising contacting in a reaction zone propylene, a cocatalyst, and a metallocene catalyst having the formula including stereoisomers: and recovering polypropylene from the reaction zone. A polypropylene composition having a tensile modulus from 40,000 psi to 300,000 psi, a tensile strength at yield from 2,000 psi to 6,000 psi, a tensile strength at break from 1,000 psi to 3,500 psi, a tensile strength from 1,000 psi to 5,000 Kpsi, an elongation at yield of greater than or equal to 10%, and an elongation at break from 50% to 500%.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: December 30, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Vladimir Marin, Abbas Razavi
  • Patent number: 7452948
    Abstract: An improved method for the preparation of a supported polymerisation catalyst system comprises the combination of (i) a porous support (ii) a polymerisable monomer, (iii) a polymerisation catalyst, and (iv) a cocatalyst, characterised in that the polymerisable monomer is added to the porous support before addition of one or both of the polymerisation catalyst and the cocatalyst. The preferred polymerisation catalyst is a metallocene complex and the preferred porous support is silica. The resultant supported catalysts are stable over long periods of time. The supported catalyst are particularly suitable for use in the gas phase.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: November 18, 2008
    Assignee: Ineos Europe Limited
    Inventors: Grant Berent Jacobsen, Brian Stephen Kimberley, Sergio Mastroianni, Michael John Taylor