Producing Particles Containing A Dispersed Phase Patents (Class 75/956)
  • Patent number: 6554915
    Abstract: Fairly pure metallic nickel may be efficiently dissolved in non-oxidizing acid. If the nickel includes individual pieces longer than 0.5 mm in any linear dimension, oxidizing agent is preferably added from the beginning of dissolution, while if the nickel is powdered so that no single piece has a linear dimension longer than 0.35 mm, oxidizing agent is preferably added only after most of the originally supplied nickel has been dissolved. After oxidizing agent is added, most or all of the remaining undissolved nickeliferous solid will then dissolve. The temperature of the reaction mixture of acid liquid and solid nickel preferably is room temperature at the beginning of dissolution but is raised in steps to a final value of at least 65° C. and maintained at that temperature for several hours.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: April 29, 2003
    Assignee: Henkel Corporation
    Inventor: David R. McCormick
  • Patent number: 5951945
    Abstract: There is provided a hydrogen occluding alloy exhibiting high absorption and desorption speeds. A hydrogen occluding alloy comprising as an overall composition: 25 to 45 weight % Zr+Hf, wherein the Hf comprises not more than 4%, 1 to 12 weight % Ti, 10 to 20 weight % Mn, 2 to 12 weight % V, 0.6 to 5 weight % rare earth elements, and a balance Ni (of which content is not less than 25 weight %) and unavoidable impurities, and basically having a three-phase structure consisting of: a main phase which constitutes the matrix of the alloy and which is made of a Zr--Ni--Mn based alloy, a dispersed granular phase made of a rare earth elements--Ni type alloy distributed along the grain boundary of the main phase, and a flaky phase which is made of a Ni--Zr type alloy attached to the dispersed granular phase and intermittently distributed along the grain boundary mentioned above.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: September 14, 1999
    Assignee: Mitsubishi Materials Corporation
    Inventors: Norikazu Komada, Mitsugu Matsumoto, Shinichiro Kakehashi, Yoshitaka Tamo
  • Patent number: 5879747
    Abstract: An electroconductive composite material composed of a three-dimensional continuum of a porous metal with the pores filled with graphite and a resin, having a good heat resistance, wear resistance, strength and thermal conductivity, having a light weight, and particularly useful as electric armature brushes and other electric sliding elements.A process of producing the composite material comprises the steps of: filling pores of a three-dimensional continuum of a porous metal with a pasty mixture composed of graphite, a binder, and a solvent; treating the continuum for volatilization of the solvent; and then, forming and heating the continuum.
    Type: Grant
    Filed: November 22, 1996
    Date of Patent: March 9, 1999
    Assignee: Nippondenso Co., Ltd.
    Inventors: Youichi Murakami, Yoshitaka Natsume, Yoshio Satou, Yoshio Miyata
  • Patent number: 5863618
    Abstract: A method for producing an atomized powder of chromium carbide particles dispersed in a nickel chromium matrix in which chromium in the powder is from 55 to 92 weight percent of the powder.
    Type: Grant
    Filed: October 3, 1996
    Date of Patent: January 26, 1999
    Assignee: Praxair St Technology, Inc.
    Inventors: William John Crim Jarosinski, Lewis Benton Temples, Calvin Henry Londry
  • Patent number: 5338714
    Abstract: The invention relates to nano-composite powders of alumina and metal constituted of grains of micronic size. Each grain comprises a compact matrix of alumina of a specific surface area less than 5 m.sup.2 /g, in which are dispersed crystallites of transition metals of alloys of these metals, of sizes less than 50 nm. The powder according to the invention may be produced starting with a precursor comprised of a mixed carboxylic salt of aluminum and one or more transition metals. The powders according to the invention permit producing by sintering cermets of alumina/metal benefitting from greatly improved mechanical and thermo-mechanical properties.
    Type: Grant
    Filed: March 24, 1992
    Date of Patent: August 16, 1994
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Abel Rousset, Xavier DeVaux
  • Patent number: 5238482
    Abstract: Prealloyed high-vanadium, cold work tool steel particles are provided for use in the powder-metallurgy production of tool steel articles. The particles are of a cold work tool steel alloy having an MC-type vanadium carbide dispersion of a carbide particle size substantially entirely less than 6 microns and in an amount of 18.5 to 34.0% by volume. The particles are produced by atomizing a molten tool steel alloy at a temperature above 2910.degree. F. and rapidly cooling the atomized alloy to form solidified particles therefrom. The particles have the MC-type vanadium carbide dispersion therein.
    Type: Grant
    Filed: May 22, 1991
    Date of Patent: August 24, 1993
    Assignee: Crucible Materials Corporation
    Inventors: William Stasko, Kenneth E. Pinnow
  • Patent number: 5147449
    Abstract: A process for producing metal metalmetalloid powder, with its particles having ultramicrocrystalline structures to nanocrystalline structures with the metalmetalloid component being composed of at least one metal reacted with at least one metalloid of the group including C, N, O, H, B, and Si. The metalloids, C, N, O, H, B, and Si are introduced in a highly reactive form together with powders of the metals of the matrix metal and of the metals of the metalmetalloid component into a high energy mill to produce a metal-metalmetalloid powder with its particles having a ultramicrocrystalline to nanocrystalline structure both in the metal matrix and in the metal metalloid component.
    Type: Grant
    Filed: April 11, 1989
    Date of Patent: September 15, 1992
    Assignee: Fried. Krupp Gesellschaft mit beschrankter Haftung
    Inventors: Hans Grewe, Wolfgang Schlump