Patents Represented by Attorney Benjamen E. Kern
  • Patent number: 8220099
    Abstract: A lint removal apparatus containing a tabbed end or ends on any side so a user to grip and hold the apparatus. One side of the apparatus contains an adhesive side that is protected by a backing. The backing must be removed by the user prior to using the apparatus. Once the backing is removed, a small portion of the backing will remain so that user can easily grip the apparatus. While gripping the apparatus, the user may remove lint by pressing the exposed adhesive side of the apparatus against the desired area containing lint or other particles to be removed. The apparatus is a small, durable, portable, economic, practical and be used by all individuals regardless of physical size.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: July 17, 2012
    Inventors: John Michael Vidmar, Michael Edward Braatz
  • Patent number: 8132460
    Abstract: Methods, systems, and apparatuses are provided for creating bond delaminations in a controlled fashion within adhesively bonded structures. In one embodiment, a system for inducing a defect in a bond of a bonded article includes a laser and a laser processor head. The laser processor head includes a housing, a lens disposed within the housing, at least one magnet disposed within the housing, and at least one sensor disposed within the housing. The system is capable of applying a laser pulse of sufficient energy fluence to cause localized weaknesses in the bond.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: March 13, 2012
    Assignee: LSP Technologies, Inc.
    Inventors: Steven M. Toller, Jeff L. Dulaney
  • Patent number: 7906745
    Abstract: A bend bar is available for use in a quality control test for testing for a consistency of residual stress effects in a particular material using a given a laser peening process. The bar is composed of the particular material to be tested and has a bar length and a bar thickness. The particular material has a characteristic maximum stress penetration depth for compressive residual stresses that can be formed in using the given laser peening process. The bar thickness is chosen so as to be at least twice the characteristic maximum stress penetration depth. The bar has a test surface that extends parallel to the bar length and perpendicular to the bar thickness. After forming a spot pattern on the test surface using the given laser peening process, the deflection generated in the bar due to the compressive residual stresses induced by laser peening can then be measured and used as a quality control measurement.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: March 15, 2011
    Assignee: LSP Technologies, Inc.
    Inventors: Richard D. Tenaglia, Allan H. Clauer, Jeff L. Dulaney, David F. Lahrman, Steve Toller
  • Patent number: 7868268
    Abstract: The invention relates to a method and apparatus for improving properties of a solid material by providing shockwaves there through. Laser shock processing is used to provide the shockwaves. The method includes applying a liquid energy-absorbing overlay, which is resistant to erosion and dissolution by the transparent water overlay and which is resistant to drying to a portion of the surface of the solid material and then applying a transparent overlay to the coated portion of the solid material. A pulse of coherent laser energy is directed to the coated portion of the solid material to create a shockwave. Advantageously, at least a portion of the unspent energy-absorbing overlay can be reused in situ at a further laser treatment location and/or recovered for later use.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: January 11, 2011
    Assignee: LSP Technologies, Inc.
    Inventors: Richard D. Tenaglia, Jeff L. Dulaney, David F. Lahrman
  • Patent number: 7861573
    Abstract: Laser shock methods and systems are disclosed for evaluating impact resistance of materials, and for simulating and evaluating threshold conditions where damage may occur.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: January 4, 2011
    Assignee: LSP Technologies, Inc.
    Inventor: Richard D. Tenaglia
  • Patent number: 7785568
    Abstract: Example compositions of liposomes with hydrophilic polymers on their surface, and containing relatively high concentrations of contrast-enhancing agents for computed tomography are provided. Example pharmaceutical compositions of such liposomes, when administered to a subject, provide for increased contrast of extended duration, as measured by computed tomography, in the bloodstream and other tissues of the subject. Also provided are example methods for making the liposomes containing high concentrations of contrast-enhancing agents, and example methods for using the compositions.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: August 31, 2010
    Assignee: Marval Biosciences, Inc.
    Inventors: Ananth Annapragada, Ravi V. Bellamkonda, Eric Hoffman, Chandra Vijayalakshmi
  • Patent number: 7775122
    Abstract: Tape overlays for use in laser bond inspection are provided, as well as laser bond inspection systems and methods utilizing tape overlays.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: August 17, 2010
    Assignee: LSP Technologies, Inc.
    Inventors: Steven M. Toller, David W. Sokol, Craig T. Walters
  • Patent number: 7776165
    Abstract: A method of manufacturing a workpiece involves performing any one of various post-processing part modification steps on a workpiece that has been previously subjected to laser shock processing. In one step, material is removed from the compressive residual stress region of the processed workpiece. Alternately, the workpiece may be provided with oversized dimensions such that the removal process removes an amount of material sufficient to generate a processed workpiece having dimensions substantially conforming to design specifications. Alternately, the material removal process is adapted to establish a penetration depth for material removal that coincides with the depth at which the workpiece exhibits maximum compressive residual stress. Alternately, a first high-intensity laser shock processing treatment is performed on the workpiece, followed by the removal of material from the compressive residual stress region, and then a second low-intensity laser shock processing treatment is performed on the workpiece.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: August 17, 2010
    Assignee: LSP Technologies, Inc.
    Inventors: Jeff L. Dulaney, Steven M. Toller, Allan H. Clauer
  • Patent number: 7770454
    Abstract: A system for evaluating the integrity of a bonded joint in an article includes a laser configured in a laser shock processing arrangement to perform a laser shock processing treatment on the article. A beam delivery system employs an articulated arm assembly to communicate the radiant energy emitted by the laser to a process head proximate the article. The laser shock processing treatment causes the formation of shockwaves that propagate through the article, inducing internal stress wave activity that characteristically interacts with the bonded joint. A sensor detects a stress wave signature emanating from the article, which is indicative of the integrity of the bond. A detector such as a non-contact electromagnetic acoustic transducer provides a measure of the stress wave signature in the form of surface motion measurements.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: August 10, 2010
    Assignee: LSP Technologies, Inc.
    Inventors: David W. Sokol, Craig T. Walters, Jeff L. Dulaney, Steven M. Toller
  • Patent number: 7752953
    Abstract: A system for neutralizing a buried mine includes a laser that is configured to generate laser energy that communicates through the covering ground material and accesses the mine in a manner sufficient to neutralize the mine. Neutralization can occur by deflagration or detonation. The laser includes a solid-state lasing medium that is run substantially uncooled during the lasing run. Namely, the lasing medium is operated without cooling until the lasing medium reaches a temperature where thermal population in a lower laser level begins to significantly lower inversion density. Following completion of the lasing run, the lasing medium is cooled at a rate limited only by a thermal stress fracture level of the lasing medium. Operation of the laser in this manner permits the laser to deliver high-irradiance, high-repetition rate pulses according to a burst mode operation that successfully accomplishes neutralization in a desired time period.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: July 13, 2010
    Assignee: LSP Technologies, Inc.
    Inventors: David W. Sokol, Jeff L. Dulaney, Craig T. Walters
  • Patent number: 7735377
    Abstract: Methods, systems, and apparatuses are provided for generation of focused stress waves that selectively apply tensile stress to local regions of a bonded article.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: June 15, 2010
    Assignees: LSP Technologies, Inc., The Boeing Company
    Inventors: David W. Sokol, Craig T. Walters, Steven M. Toller, Richard H. Bossi, Kevin R. Housen
  • Patent number: 7713517
    Abstract: Example compositions of liposomes with hydrophilic polymers on their surface, and containing relatively high concentrations of contrast-enhancing agents for computed tomography are provided. Example pharmaceutical compositions of such liposomes, when administered to a subject, provide for increased contrast of extended duration, as measured by computed tomography, in the bloodstream and other tissues of the subject. Also provided are example methods for making the liposomes containing high concentrations of contrast-enhancing agents, and example methods for using the compositions.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: May 11, 2010
    Assignee: Marval Biosciences, Inc.
    Inventors: Ananth Annapragada, Ravi V. Bellamkonda, Eric Hoffman, Chandra Vijayalakshmi
  • Patent number: RE43176
    Abstract: The invention relates to a method and apparatus for improving properties of a solid material by providing shockwaves there through. Laser shock processing is used to provide the shockwaves. The method includes applying a liquid energy-absorbing overlay, which is resistant to erosion and dissolution by the transparent water overlay and which is resistant to drying to a portion of the surface of the solid material and then applying a transparent overlay to the coated portion of the solid material. A pulse of coherent laser energy is directed to the coated portion of the solid material to create a shockwave. Advantageously, at least a portion of the unspent energy-absorbing overlay can be reused in situ at a further laser treatment location and/or recovered for later use.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: February 14, 2012
    Assignee: LSP Technologies, Inc.
    Inventors: Richard D. Tenaglia, Jeff L. Dulaney, David F. Lahrman