Patents Represented by Attorney Benman, Brown & Williams
  • Patent number: 7973977
    Abstract: A method and system for retouching digital images for a motion picture removes semi-transparent artifacts or ‘blotches’ caused by contaminates in the optical path of the camera. This approach provides the benefit of only having to retouch a single average image that is than automatically applied via a correction power map to the entire sequence of images for the affected scene. The formation of an average image tends to reinforce the artifacts making them easier to identify and reduce background detail making it easier to retouch the artifact.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: July 5, 2011
    Assignee: Reliance Media Works
    Inventor: Kimball Darr Thurston, III
  • Patent number: 7505745
    Abstract: An interoperable receiver adapted to receive signals in multiple SDARS bands. The advantageous operation is afforded by the design of the receiver by which an entire band consisting of multiple carriers is received at one time. Receipt and processing of each SDARS band signals is then effectuated by retuning a synthesizer as necessary. In the illustrative embodiment, the invention further includes circuitry for simultaneously receiving first and second ensembles. The first ensemble including a first signal from a first source, a first signal from a second source and a first signal from a third source. The second ensemble including a second signal from the first source, a second signal from the second source and a second signal from the third source. In a preferred embodiment, the inventive receiver is adapted to receive and output audio signals along with data signals simultaneously.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: March 17, 2009
    Assignee: XM Satellite Radio, Inc.
    Inventors: Paul Marko, David L. Brown, Craig Wadin
  • Patent number: 7123875
    Abstract: A satellite digital audio radio service multipoint distribution system and method. The system comprises a satellite antenna and a satellite receiver for receiving a satellite digital audio radio signal and distributing a converted signal in response thereto. The distributed signal is received by plural receivers each of which provides a respective output signal in response thereto. In the best mode, the satellite receiver is a terrestrial repeater. The repeater decodes a stream of data received from the satellite and recodes the stream using a satellite radio terrestrial broadcast format. In the best mode, the signal is an intermediate frequency signal in the XM radio, multi-carrier modulation format. The recoded signal is rebroadcast by the repeater via a distribution network and received by a plurality of intermediate frequency (IF) receivers. The distribution system may be wireless, cable, or fiber optic.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: October 17, 2006
    Assignee: XM Satellite Radio, Inc.
    Inventors: Paul D. Marko, Craig Wadin
  • Patent number: 7010263
    Abstract: A system and method for distributing music and data. The music or data is first transmitted to a consumer via a satellite radio network. The system includes a satellite radio receiver for the user which is capable of receiving the wireless transmission and providing an audio and/or visual output in response thereto. In addition, the receiver is adapted to receive an input (e.g., voice command) from the user by which the user is able to signal an interest in recording a selection of music or data being played and/or displayed. In response to this signal and a record-ability signal, an ID signal is stored on a removable media which identifies the selection being played and/or displayed. The ID signal may be a composite signal indicating the time and channel, a signal that identifies a selection by number, or other suitable ID signal.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: March 7, 2006
    Assignee: XM Satellite Radio, Inc.
    Inventor: Stellios J. Patsiokas
  • Patent number: 6847751
    Abstract: A structure for effecting a transition from a passive waveguide to an active waveguide or from an active waveguide to a passive waveguide of the present invention. The inventive device comprises a first cladding; a first core disposed within the first cladding; and a ground plane disposed over the first cladding and the core. A second cladding is disposed on the ground plane. A second core is disposed on the second cladding. A third cladding is disposed on the second cladding and the second core and an electrode is disposed on top of the third cladding. The inventive structure enables the construction of a novel an advantageous switch comprising an input port; an output port; and plural waveguides disposed between the input port and the output port. Each waveguide includes a first cladding; a first core disposed within the first cladding; and a ground plane disposed over the first cladding and the core. A second cladding is disposed on the ground plane. A second core is disposed on the second cladding.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: January 25, 2005
    Assignee: Pacific Wave Industries, Inc.
    Inventors: Daniel H. Chang, Talal Azfar, Harold R. Fetterman, Joseph Michael
  • Patent number: 6823169
    Abstract: A system and method for simultaneously receiving first and second ensembles. The first ensemble includes a first signal from a first satellite, a first signal from a second satellite and a first signal from a terrestrial repeater. Likewise, the second ensemble includes a second signal from the first satellite, a second signal from the second satellite and a second signal from the terrestrial repeater. The inventive receiver further includes a mechanism for selectively outputting signals transmitted within the first and second ensembles. In the illustrative embodiment, the first signal from the second satellite is identical to the first signal from the first satellite. Similarly, the first signal from the terrestrial repeater is identical to the first signal from the first satellite.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: November 23, 2004
    Assignee: XM Satellite Radio, Inc.
    Inventors: Paul Marko, David L. Brown, Craig Wadin
  • Patent number: 6741762
    Abstract: An electro-optical modulator and a method for biasing a Mach-Zehnder modulator. The inventive modulator includes a layer of material at least partially transparent to electromagnetic energy. A first conductive layer is disposed on a first surface of the layer of at least partially transparent material. A second conductive layer is disposed on a second surface of the layer of at least partially transparent material. A layer of insulating material is disposed on the second conductive layer and a third conductive layer is disposed on the layer of insulating material. In the illustrative application, the modulator is a Mach-Zehnder modulator. A biasing potential is applied to the second conductive layer of the modulator and a modulating voltage is applied across the first and the third conductive layers.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: May 25, 2004
    Assignee: Pacific Wave Industries, Inc.
    Inventors: Jan Grinberg, Min-Cheol Oh, Harold R. Fetterman, Joseph Michael
  • Patent number: 6735416
    Abstract: A receiver adapted to receive a signal having at least first and second carrier frequencies on which first and second information signals are modulated, respectively. The inventive receiver further includes circuitry for converting the received signal to a complex baseband signal. In the illustrative embodiment, the received signal includes first and second ensembles. The first ensemble includes a first signal from a first source, a first signal from a second source and a first signal from a third source. The second ensemble includes a second signal from the first source, a second signal from the second source and a second signal from the third source. The receiver is adapted to selectively output the first and/or the second ensemble. Conversion of the band is achieved with quad mixers. The outputs of the mixers are digitized and selectively provided as the first and/or the second ensemble by a digital translation stage.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: May 11, 2004
    Assignee: XM Satellite Radio, Inc.
    Inventors: Paul Marko, David L. Brown, Craig Wadin
  • Patent number: 6735013
    Abstract: A frequency shifting device. The present invention provides a device and method for shifting a frequency of an optical signal comprising the steps of providing a layer of optically refractive material having a moving refractive boundary responsive to an application of an electrical signal. The inventive device includes a layer of optically refractive material having a refractive boundary responsive to an application of an electrical signal and an arrangement for providing an electrical signal to the layer to effect a predetermined frequency shift of an optical signal passing therethrough. In an illustrative embodiment, the device includes an active polymer layer, an optically conductive first cladding disposed beneath the active polymer layer, and a second cladding layer disposed above the active polymer layer, a microstrip line disposed over the second cladding layer and a ground plane beneath the first cladding layer.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: May 11, 2004
    Assignee: Pacific Wave Industries, Inc.
    Inventors: Ilya Y. Poberezhskiy, Harold R. Fetterman, Joseph Michael
  • Patent number: 6724827
    Abstract: A communications system and method in which first and second carrier frequencies are transmitted from a first transmitter. The first carrier frequency is at a first low end of a band and the second carrier is at a second higher end of the band. Third and fourth carrier frequencies are transmitted from a second transmitter. The third carrier is at the lower end of the band but higher in frequency than the first carrier and the fourth carrier is at the higher end of the band but lower in frequency than the second carrier. Fifth and sixth carrier signals are transmitted from a third transmitter. The fifth carrier signal is higher in frequency than the third carrier signal and the sixth carrier signal is lower in frequency than the fourth carrier signal. In the illustrative embodiment, the first transmitter is located on a first satellite, the second transmitter is located on a second satellite and the third transmitter is located on a terrestrial repeater.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: April 20, 2004
    Assignee: XM Satellite Radio, Inc.
    Inventors: Stellios J. Patsiokas, Paul Marko, Craig Wadin
  • Patent number: 6684174
    Abstract: A wind gauge apparatus and method. An illustrative embodiment includes a microphone positioned to engage wind pressure from a first relative direction and a controller coupled to receive an audio signal from the microphone. The controller compares the audio signal with plural threshold values, representative of wind pressure levels, and determines a first wind pressure level incident upon the microphone. Filtering and gain controls are used to condition the audio signal output from the microphone. Plural microphones are employed to allow that detection of wind direction and magnitude about a compass of directions. Digital signal processing is employed to process data. In an illustrative embodiment, the wind direction and magnitude data are used to recommend a golf club size adjustment and a golf swing direction adjustment to the user, who has taken a measurement of the wind with respect to a reference golf swing direction.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: January 27, 2004
    Assignee: RadioShack, Corp.
    Inventors: John M. Clark, Ian Dwayne Campbell, Watson C. K. Chow, David J. Edmondson, Marco C. Ko, Alan M. L. Lam, Vincent M. T. Lam, Wai-Fong Lee
  • Patent number: 6643419
    Abstract: A structure for effecting a transition from a passive waveguide to an active waveguide or from an active waveguide to a passive waveguide of the present invention. The inventive device comprises a first cladding; a first core disposed within the first cladding; and a ground plane disposed over the first cladding and the core. A second cladding is disposed on the ground plane. A second core is disposed on the second cladding. A third cladding is disposed on the second cladding and the second core and an electrode is disposed on top of the third cladding. The inventive structure enables the construction of a novel an advantageous switch comprising an input port; an output port; and plural waveguides disposed between the input port and the output port. Each waveguide includes a first cladding; a first core disposed within the first cladding; and a ground plane disposed over the first cladding and the core. A second cladding is disposed on the ground plane. A second core is disposed on the second cladding.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: November 4, 2003
    Assignee: Pacific Wave Industries, Inc.
    Inventors: Daniel H. Chang, Talal Azfar, Harold R. Fetterman, Joseph Michael
  • Patent number: 6620023
    Abstract: A model vehicle that operates to emulate “hydraulics” in a full size vehicle is taught. A suspension lift function and a suspension tilt function are produced though implementation of suspension apparatus. A wheel carriage is coupled to a chassis and the movement therebetween is controlled by one or more actuators. Either lift or tilt, or both, movement may be employed. In an illustrative embodiment, rotational movement is employed to effect lift and tilt, along perpendicular axis defined by a sub-chassis. A first actuator works between the chassis and sub-chassis, and a second actuator works between the sub-chassis and a wheel carriage. Control may be remote, utilizing wired, radio, sonic, or infrared remote control schemes.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: September 16, 2003
    Assignee: Radio Shack, Corp.
    Inventor: Bill Yeung
  • Patent number: 6563805
    Abstract: A device for prepaid recording of digital audio signals. In a system where digital radio signals are received in an encoded format, a digital converter that is enabled by a smartcard module is employed to convert encoded digital signals to decoded digital signals for recording onto a digital storage media. A smartcard having a prepaid account balance is employed to authorize and control the recording of digital signals. A buffer is advantageously employed to store a quantity of digital signals prior to recording.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: May 13, 2003
    Assignee: XM Satellite Radio, Inc.
    Inventors: Hien Duc Ma, Argyrios A. Chatzipetros
  • Patent number: 6563908
    Abstract: A high voltage device housing assembly includes a housing and a high voltage assembly arranged in combination with an improved insulation system. The high voltage assembly is disposed within the enclosure defined by the housing, and the outer surface of the high voltage device, such as a vacuum tube, bears an insulator including a first portion generally continuously covering the side surface of the high voltage and an integral second portion comprising a plurality of spaced apart projections extending around the side surface and between the first portion and the inner wall of the housing. Air gaps are present between the respective projections, and the spacing of the ribs is established in a manner that inhibits ionic conduction from occurring between the housing and the high voltage device, which otherwise could lead to high voltage breakdowns.
    Type: Grant
    Filed: November 11, 1999
    Date of Patent: May 13, 2003
    Assignee: Kevex X-Ray, Inc.
    Inventor: Richard S. Enck, Jr.
  • Patent number: D499877
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: December 21, 2004
    Assignee: Mark-Mason Unlimited, LLC
    Inventor: Hubert Alvin Mark