Patents Represented by Attorney Bryan C. Hoke, Jr.
  • Patent number: 8300880
    Abstract: A system and method is disclosed for acquiring temperature data from a plurality of features in a chamber including capturing a first image of an interior area of the chamber, capturing a second image of the interior area of the chamber, identifying a plurality of features within the data for the first image and the data for the second image, generating an interior area representation based on the first image data, the second image data, and the identification of each feature of the plurality of features in the interior area, and correlating the interior area representation to temperature information related to the interior area.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 30, 2012
    Inventors: Ali Esmaili, Xianming Jimmy Li, William Robert Licht, Kevin Boyle Fogash, Oliver Jacob Smith, IV, Blaine Edward Herb, Thomas Joseph Bzik
  • Patent number: 8287762
    Abstract: A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: October 16, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventor: John Michael Repasky
  • Patent number: 8286675
    Abstract: Method for dispensing a gas comprising (a) providing a gas storage system containing pressurized gas and having at least first and second gas storage volumes, first and second flow control valves in flow communication with the first and second gas storage volumes, respectively, wherein each flow control valve is initially closed, and wherein the first gas storage volume has a smaller volumetric capacity than the second gas storage volume; (b) selecting a reference temperature; (c) measuring the ambient temperature; (d) providing a gas receiving vessel and placing it in flow communication with each flow control valve and with the gas storage system; and (e) initiating delivery of the gas by (i) opening the first flow control valve when the ambient temperature is equal to or greater than the reference temperature or (ii) opening the second flow control valve when the ambient temperature is less than the reference temperature.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: October 16, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: David John Farese, Joseph Perry Cohen
  • Patent number: 8287763
    Abstract: A steam-hydrocarbon reforming process and apparatus wherein reformate from a prereformer is reacted in a gas heated reformer which is heated by reformed gas from a primary reformer. Reformate from the gas heated reformer is passed to the primary reformer as feed gas.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: October 16, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Hoanh Nang Pham, Xiang-Dong Peng, Shankar Nataraj, Michael Enever
  • Patent number: 8262755
    Abstract: Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: September 11, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Michael Repasky, Michael Francis Carolan, VanEric Edward Stein, Christopher Ming-Poh Chen
  • Patent number: 8246719
    Abstract: Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: August 21, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, John Charles Bernhart
  • Patent number: 8240370
    Abstract: Reformer and method for producing hydrogen and steam where steam is used for steam-assisted extraction of heavy hydrocarbons. Steam is injected into a hydrocarbon-containing reservoir. Hydrocarbons are extracted from the reservoir along with produced water. Hydrogen is produced in a catalytic steam hydrocarbon reformer. Combustion product gas from the reformer is used to generate wet steam in a once-through steam generator from produced water recycled from the reservoir. The wet steam is used for the steam-assisted extraction of heavy hydrocarbons. The reformer has a heat exchanger section where a heat exchanger is suitable for processing the produced water by once-through steam generation and is suitable for mechanical cleaning.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: August 14, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Eugene Palamara, David Anthony Zagnoli, William Frederick Baade
  • Patent number: 8219247
    Abstract: A method of operating a furnace having process tubes and multiple burners where it is desired to conform the temperatures of the process tubes to selected target temperature criterion. The present method provides a systematic and quantitative approach to determine how to adjust burner flow rates to result in desired tube wall temperatures, for example to minimize the temperature deviation between tube wall temperatures at a predetermined elevation in the furnace.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: July 10, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Ali Esmaili, William Robert Licht, Xianming Jimmy Li, Oliver J. Smith, IV
  • Patent number: 8178075
    Abstract: A tubular reactor and method for producing a product mixture in a tubular reactor where the tubular reactor comprises an internal catalytic insert having orifices for forming fluid jets for impinging the fluid on the tube wall. Jet impingement is used to improve heat transfer between the fluid in the tube and the tube wall in a non-adiabatic reactor. The tubular reactor and method may be used for endothermic reactions such as steam methane reforming and for exothermic reactions such as methanation.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: May 15, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Xiaoyi He, Robert Roger Broekhuis, Diwakar Garg, Bo Jin, William Robert Licht, Stephen Clyde Tentarelli
  • Patent number: 8172566
    Abstract: An apparatus for combustion of a liquid fuel, such as an atomizer or burner, and an associated method using the apparatus for combusting an atomized liquid fuel. The apparatus for combustion has an outer conduit, an inner conduit and a spray tip. The spray tip has a mixing chamber for receiving a liquid fuel and an atomizing gas, and an orifice for discharging the liquid fuel and atomizing gas mixture as an atomized liquid fuel. The inner conduit has external fins where at least some of the external fins contact the inner surface of the spray tip.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 8, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Matthew James Watson, Xiaoyi He
  • Patent number: 8156970
    Abstract: Method for dispensing a gas comprising (a) providing a gas storage system containing pressurized gas and having at least first and second gas storage volumes, first and second flow control valves in flow communication with the first and second gas storage volumes, respectively, wherein each flow control valve is initially closed, and wherein the first gas storage volume has a smaller volumetric capacity than the second gas storage volume; (b) selecting a reference temperature; (c) measuring the ambient temperature; (d) providing a gas receiving vessel and placing it in flow communication with each flow control valve and with the gas storage system; and (e) initiating delivery of the gas by (i) opening the first flow control valve when the ambient temperature is equal to or greater than the reference temperature or (ii) opening the second flow control valve when the ambient temperature is less than the reference temperature.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: April 17, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: David John Farese, Joseph Perry Cohen
  • Patent number: 8148583
    Abstract: An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: April 3, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Richard Paul Underwood, Alexander Makitka, III, Michael Francis Carolan
  • Patent number: 8137422
    Abstract: A process for producing a hydrogen-containing product gas with reduced carbon dioxide emissions compared to conventional hydrogen production processes. A hydrocarbon and steam are reformed in a reformer and the resulting reformate stream is shifted in one or more shift reactors. The shifted mixture is scrubbed to remove carbon dioxide to form a carbon dioxide-depleted stream. The carbon dioxide-depleted stream is separated to form a hydrogen-containing product gas and a by-product gas. A portion of the hydrogen containing product gas is used as a fuel in the reformer and a portion of the by-product gas is recycled back into the process. The process may optionally include reforming in a prereformer and/or an oxygen secondary reformer.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: March 20, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: William Robert Licht, Stephen Paul DiMartino, Sr., Eugene S. Genkin, Xianming Jimmy Li, Bryan Clair Hoke, Jr.
  • Patent number: 8114193
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: February 14, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: VanEric Edward Stein, Michael Francis Carolan, Christopher M. Chen, Phillip Andrew Armstrong, Harold W. Wahle, Theodore R. Ohrn, Kurt E. Kneidel, Keith Gerard Rackers, James Erik Blake, Shankar Nataraj, Rene Hendrik Elias Van Doorn, Merrill Anderson Wilson
  • Patent number: 8038981
    Abstract: Complex metal oxide-containing pellets and their use for producing hydrogen. The complex metal oxide-containing pellets are suitable for use in a fixed bed reactor due to sufficient crush strength. The complex metal oxide-containing pellets comprise one or more complex metal oxides and at least one of in-situ formed calcium titanate and calcium aluminate. calcium titanate and calcium aluminate are formed by reaction of suitable precursors in a mixture with one or more complex metal carbonates. The complex metal oxide-containing pellets optionally comprise at least one precious metal.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: October 18, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Robert Quinn, Frederick Carl Wilhelm, Gokhan Alptekin, Margarita Dubovik, Matthew Schaefer
  • Patent number: 8020589
    Abstract: A hydrogen dispensing station and method of operating a hydrogen dispensing station for dispensing to multiple receiving vessels. The station and method limit receiving vessel gas temperature during dispensing. Various components used to limit receiving vessel gas temperature during dispensing are mutual to multiple hydrogen service ports. Receiving vessel gas temperature during dispensing may be affected by pressure ramp rate control, cooling of hydrogen in a heat exchanger, and/or use of a lower temperature hydrogen source stream.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: September 20, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Joseph Perry Cohen, Tama Maya Copeman
  • Patent number: 7988948
    Abstract: A method for generating hydrogen and/or syngas in a production facility where little or no export steam is produced. Most or all of the steam produced from the waste heat from the process is used in the steam-hydrocarbon reformer. Reformed gas is passed to a pressure swing adsorption system for H2 purification. In the method, CO2 is removed from the pressure swing adsorber residual gas prior to recycling the residual gas to the reformer for use as feed and as fuel. Plant efficiencies using the method and prior art-type methods are compared.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: August 2, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Galip Hakan Guvelioglu, Eugene S. Genkin, Kerry Andrew Scott, David Anthony Zagnoli
  • Patent number: 7955423
    Abstract: Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: June 7, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Howard Gordon, Dale M. Taylor
  • Patent number: 7921883
    Abstract: A hydrogen dispenser comprises a programmable controller and a user interface operably connected to the programmable controller. The programmable controller has a plurality of user-selectable hydrogen dispensing rate algorithms. The user interface offers the plurality of user-selectable hydrogen dispensing rate algorithms and is used for setting a user-selected dispensing rate algorithm from among the plurality of user-selectable hydrogen dispensing rate algorithms.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: April 12, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Joseph Perry Cohen, David John Farese, Keith David Gourley
  • Patent number: 7919057
    Abstract: A process and apparatus for producing a hydrogen-containing gas in a reformer where a furnace, which is independent of the reformer, heats the effluent from a prereformer prior to reacting the prereformer effluent in the reformer. The prereformer effluent may be heated in a heat exchange tube in the furnace where the heat exchange tube is positioned in the furnace to preclude direct radiation from any flames in the furnace thereby preventing local overheating of the heat exchange tube and preventing carbon formation in the heat exchange tube. Fuel and oxidant gas may be introduced into the furnace with significant excess oxidant gas, having a stoichiometric ratio of 1.8 to 2.8 for controlling the temperature of the heat exchange tube.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: April 5, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Eugene S. Genkin, Nitin Madhubhai Patel, Gregory David Snyder, Miguel Rafael Alvarez, Vladimir Yliy Gershtein