Patents Represented by Attorney, Agent or Law Firm Carmen Santa Maria
  • Patent number: 6616410
    Abstract: The present invention provides for a squealer tip to include some proportion of a highly oxidation-resistant material, and a method for casting same, such that if any environmental coating were removed, the tip would retain some increased level of environmental resistance. The oxidation-resistant material optionally may also be a high abrasion resistance material, such that recession of the tip due to rubbing against a stator would be reduced. In a preferred embodiment, an abrasion-resistant and/or oxidation-resistant material is placed and suitably anchored into the tip region of a wax precursor used to cast a turbine airfoil. During the casting operation, the abrasion-resistant and/or oxidation-resistant material is not completely melted. As the alloy used to form the majority of the turbine blade solidifies, the abrasion and/or oxidation resistant material is incorporated into the turbine airfoil by the solidification of the alloy around it.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: September 9, 2003
    Assignee: General Electric Company
    Inventors: Richard John Grylls, Joseph David Rigney, Warren Davis Grossklaus, Jr., Melvin Robert Jackson
  • Patent number: 6616978
    Abstract: A substrate is protected by a multilayer protective coating having an oxide layer, and a phosphate/organic binder layer initially overlying the oxide layer. The multilayer protective coating is cured by first degassing the multilayer protective coating in a pre-cure degassing temperature range of from about 250° F. to about 500° F. for a time of at least about 30 minutes. The multilayer protective coating is thereafter heated to a curing temperature range of from about 1200° F. to about 1400° F. for a time of at least about 30 minutes.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: September 9, 2003
    Assignee: General Electric Company
    Inventors: Michael James Weimer, Joseph Aloysius Heaney, Bangalore Aswatha Nagaraj, James Andrew Hahn
  • Patent number: 6610416
    Abstract: The present invention provides for a method to reduce the strength of the honeycomb of a jet turbine stator, increasing its machinability, with a resultant reduction in measured peak tooth temperature, while maintaining or even improving its high temperature capability, so as not to limit its operating environment. The air seal functionality is unaffected, and even improved in some instances. The machinability of the honeycomb is increased by using a light element diffused into the honeycomb ribbon to produce the effect of reducing its strength and ductility while maintaining the environmental resistance needed. The present invention also includes the stator honeycomb produced by the foregoing method.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: August 26, 2003
    Assignee: General Electric Company
    Inventors: Thomas Tracy Wallace, Brent Ross Tholke
  • Patent number: 6607789
    Abstract: A method for forming a thermal barrier coating system on an article subjected to a hostile thermal environment, such as the hot gas path components of a gas turbine engine. The coating system is generally comprised of a ceramic layer and an environmentally resistant beta phase nickel aluminum intermetallic (&bgr;-NiAl) bond coat that adheres the ceramic layer to the component surface. A thin aluminum oxide scale forms on the surface of the &bgr;-NiAl during heat treatment. The &bgr;-NiAl may contain alloying elements in addition to nickel and aluminum in order to increase the environmental resistance of the &bgr;-NiAl. The &bgr;-NiAl powder having a size in the range of 20-50 microns is applied using air plasma spray techniques to produce a surface having a roughness of 400 microinches or rougher. The ceramic top coat can be applied using inexpensive thermal spray techniques to greater thicknesses than achievable otherwise because of the rough surface finish of the underlying &bgr;-NiAl bond coat.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Joseph David Rigney, Michael James Weimer, Bangalore Aswatha Nagaraj, Yuk-Chiu Lau
  • Patent number: 6607120
    Abstract: A flexible circuit compression connector system utilized to electrically connect together conductive pads disposed on a rigid printed circuit board, the connector system comprising a flexible insulating substrate having conductive material at a plurality of preselected positions and a conductive line extending between at least two of the preselected positions, a plurality of contacts, each contract secured to the flexible substrate at each of the preselected positions having conductive material, a compression assembly that includes a resilient compression mat and means for aligning the flexible substrate of the compression assembly and the rigid substrate together so that the resilient compression mat urges the contacts secured to the flexible substrate against the conductive pads on the printed circuit board.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: August 19, 2003
    Assignee: InterCon Systems, Inc.
    Inventors: Douglas A. Neidich, Grant R. Adams, Jr.
  • Patent number: 6607611
    Abstract: A nickel-base superalloy protected by a thermal barrier-coating is prepared by depositing a bond coat layer overlying and contacting the substrate, depositing a ceramic layer overlying and contacting the bond coat layer, thereby forming a coated substrate, placing the coated substrate into a heating apparatus operating with an oxidizing atmosphere, and heating the coated substrate in the heating apparatus to a temperature of from about 1850° F. to about 2100° F., for a time of at least about 30 minutes. A layer of alpha alumina is formed on the bond coat layer, between the bond coat layer and the ceramic layer.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventor: Ramgopal Darolia
  • Patent number: 6602356
    Abstract: A method of depositing by chemical vapor deposition a modified platinum aluminide diffusion coating onto a superalloy substrate comprising the steps of applying a layer of a platinum group metal to the superalloy substrate; passing an externally generated aluminum halide gas through an internal gas generator which is integral with a retort, the internal gas generator generating a modified halide gas; and co-depositing aluminum and modifier onto the superalloy substrate. In one form, the modified halide gas is hafnium chloride and the modifier is hafnium with the modified platinum aluminum bond coat comprising a single phase additive layer of platinum aluminide with at least about 0.5 percent hafnium by weight percent and about 1 to about 15 weight percent of hafnium in the boundary between a diffusion layer and the additive layer. The bond coat produced by this method is also claimed.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: August 5, 2003
    Assignee: General Electric Company
    Inventors: Bangalore A. Nagaraj, Jeffrey L. Williams
  • Patent number: 6599568
    Abstract: A cooling system for cooling of the flow path surface region of an engine component used in a gas turbine engine and a method for making a system for cooling of the flow path surface region of an engine component used in a gas turbine engine. The method comprises the steps of channeling apertures in a substrate to a diameter of about 0.0005″ to about 0.02″ to allow passage of cooling fluid from a cooling fluid source; applying a bond coat of about 0.0005″ to about 0.005″ in thickness to the substrate such that the bond coat partially fills the channels; applying a porous inner TBC layer of at least about 0.01″ in thickness to the bond coat, such that the TBC fills the channels; applying an intermediate ceramic layer that is more dense than the inner TBC layer on top of the porous TBC; applying an outer TBC layer over the intermediate layer; and, passing cooling fluid from a cooling fluid source through the channel into the porous TBC.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: July 29, 2003
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Robert Edward Schafrik, Ramgopal Darolia
  • Patent number: 6586046
    Abstract: Apparatus and method for producing metallic flake having an environmental coating for use in oxidative and corrosive atmospheres. Fluidized bed techniques are utilized to perform a controlled oxidation of metallic particles that include aluminum. The fluidized techniques permit the formation of a thin, outer shell of alumina over the outer surface of the flake. Because the oxidation is controlled so that the selective oxidation produces a thin outer shell, the particle has good reflectance and the metallic core of the particle is unaffected by the oxidizing treatment. Although the techniques of the present invention are effective for producing a reflective surface on aluminum-containing iron alloys while the core particles can be either magnetically soft or hard, the techniques can be used to produce a reflective surface that is corrosion and oxidation resistant on any aluminum containing alloy. Apparatus that facilitates the controlled oxidation is also set forth.
    Type: Grant
    Filed: January 26, 2000
    Date of Patent: July 1, 2003
    Assignee: General Electric Company
    Inventors: John F. Ackerman, Andrew J. Skoog, Matthew B. Buczek, Jane A. Murphy
  • Patent number: 6582812
    Abstract: An article of manufacture includes a metallic nonfoam region, and a ceramic foam region joined to the metallic region. The ceramic foam region is an open-cell solid ceramic foam made of ceramic cell walls having an intracellular volume therebetween. The ceramic is preferably alumina. The intracellular volume may be empty porosity, or an intracellular metal such as an intracellular nickel-base superalloy.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: June 24, 2003
    Assignee: General Electric Company
    Inventors: Richard John Grylls, Curtiss Mitchell Austin
  • Patent number: 6572713
    Abstract: An austenitic manganese steel microalloyed with nitrogen, vanadium and titanium used for castings such as mantles, bowls and jaws manufactured as wear components of crushers in the mining and aggregate industries, hammers used in scrap shredders, frogs and switches used in railway crossings and buckets and track shoes used in mining power shovels. These novel compositions exhibit a fine grain size having carbonitride precipitates that result in castings having a wear life 20-70% longer than prior art castings. The austenitic manganese steel includes, in weight percentages, the following: about 11.0% to 24.0% manganese, about 1.0% to 1.4% carbon, up to about 1% silicon, up to about 1.9% chromium, up to about 0.25% nickel, up to about 1.0% molybdenum, up to about 0.2% aluminum, up to about 0.25% copper, phosphorus and sulfur present as impurities in amounts of about 0.07% max and about 0.06% max. respectively, microalloying additions of titanium in the amounts of about 0.020-0.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: June 3, 2003
    Assignee: The Frog Switch and Manufacturing Company
    Inventors: Jerzy W. Kucharczyk, Karl R. Funk, Bernd Kos
  • Patent number: 6565672
    Abstract: An article protected by a protective coating system is fabricated by providing an article substrate having a substrate surface; and thereafter producing a protective coating having a flattened, pre-oxidized protective-coating surface on the substrate surface by depositing a protective coating on the substrate surface, the protective coating having a protective-coating surface, processing the protective coating to achieve a flattened protective-coating surface, and controllably oxidizing the protective-coating surface. A thermal barrier coating may be deposited overlying the flattened, pre-oxidized protective coating.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: May 20, 2003
    Assignee: General Electric Company
    Inventors: Irene Spitsberg, Ramgopal Darolia
  • Patent number: 6557371
    Abstract: An apparatus and associated method for discharging a fluid and a liquid separated from the fluid from an outlet chamber of a heat exchanger. The outlet chamber is configured to collect the separated liquid. The outlet chamber is in fluid communication with an outlet opening disposed on an exit surface of the outlet chamber. The apparatus includes a plate that is positionable in the outlet chamber adjacent to the exit surface to form a channel between the plate and the exit surface. The plate is configured to protrude over the outlet tube opening so that the fluid flowing through the outlet chamber and into the outlet opening pulls the liquid collected in the outlet chamber through the channel and out through the outlet opening with the fluid. Because of the plate protruding over the outlet opening, the fluid exiting directly from the outlet chamber through the outlet opening must flow through a decreased area. This decreased area produces the vena contracta effect and creates a low pressure region.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: May 6, 2003
    Assignee: York International Corporation
    Inventor: John F. Judge
  • Patent number: 6547137
    Abstract: An inventory and tracking system based on a labeling system is disclosed. Labels are provided for affixation to the product or product container. Each label includes, in addition to the standard information associated the product, a hologram associated with the product and a machine readable code. The machine readable code on each unit of product includes at least one set of unique machine readable identifiers that uniquely identifies each product unit. In addition, the hologram can include the trademark of the manufacturer or supplier, to permit the consumer to ascertain at a glance that the product originates from a source of known quality. The label on each unit is scanned before shipment and the destination of each unit of product is entered and stored.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: April 15, 2003
    Inventors: Larry J. Begelfer, Mark S. DeHoff, James M. Neff
  • Patent number: 6544002
    Abstract: A grit blasting and alkaline etch surface pretreatment that is applied to a metallic airfoil. The metallic airfoil includes pockets or cavities that have been fabricated into the airfoil to reduce the weight of the airfoil. The pretreatment includes grit blasting the surface of the pockets or cavities, followed by washing the airfoil and treating the airfoil in an alkaline etch bath. After any remaining solution from the bath is neutralized and within twenty-four hours of the end of the pretreatment, primer is applied to the surface of the pockets or cavities. After the primer is applied to the surface of the pockets, a lightweight resin is injected into the pockets and bonds to the primer forming a mechanical bond with good fracture toughness at elevated temperatures.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: April 8, 2003
    Assignee: General Electric Company
    Inventors: Charles Richard Evans, Kathryn Ann Evans, Wendy Wen-Ling Lin, Mark Alan Rosenzweig, Jeffrey Lynn Schworm
  • Patent number: 6542566
    Abstract: An improved fuel element for use in a nuclear reactor comprised of a central core of nuclear material, which is surrounded by a composite cladding. The cladding has an outer metallic tubular portion comprised of well-known cladding alloys used for such purposes. Metallurgically bonded to the outer metallic tubular portion is a commercially pure zirconium microalloyed with a controlled quantity of iron. The zirconium microalloyed with iron produced an inner metallic barrier having a beneficial balance between stress corrosion crack resistance and corrosion resistance while retaining other beneficial properties of pure zirconium, such as ductility.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: April 1, 2003
    Inventors: Ronald Bert Adamson, Daniel Reese Lutz, Mickey Orville Marlowe, John Frederick Schardt, Cedric David Williams
  • Patent number: 6530278
    Abstract: An ultrasonic testing system for testing the circumferential girth welds of a tank for defects utilizes a probe trolley to which six probes are attached. The probe trolley is clamped to a drive unit which runs upon a track that is removably attached to the interior surface of the tank. The track is positioned so that the probe trolley travels over the weld as the drive unit negotiates the track. Coupling fluid is supplied to the probe trolley so that a layer of coupling fluid exists between the probes and the tank interior surface adjacent to the weld. Ultrasonic beams emitted by the probe travel through the coupling fluid, into the tank wall and weld and are reflected. Data from the probes is directed to a processor where it is analyzed, displayed and stored.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: March 11, 2003
    Inventors: Matthew D. Bowersox, Jerry H. Spigelmyer, Daniel L. Yoder, Dane E. Hackenberger, Sherrill R. Harris, William P. Waldron, Frederick R. Hoar
  • Patent number: 6530236
    Abstract: This invention increases efficiency of a refrigeration system by maximizing the cooling of the condenser and reducing unnecessary work done by the compressor. In air cooled systems it will also increase the stability of the fans by reducing fan cycling. The fan controller will utilize an algorithm that will consider the following inputs: oil pressure, compressor suction pressure, expansion valve position, compressor loading, last compressor loading change, and current fan stage. The algorithm uses fuzzy logic to characterize the inputs and generates an output that controls the system cooling fans.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: March 11, 2003
    Assignee: York International Corporation
    Inventors: Curtis C. Crane, John F. Judge
  • Patent number: 6528118
    Abstract: A process for creating microgrooves within or adjacent to a TBC layer applied to a gas turbine engine component such as a blade or vane. The process includes the steps of applying a bond coat to the surface of the substrate. A wire mesh is placed a predetermined distance above the bond coat surface. With the wire mesh in position, about 0.002 inches of an inner TBC is applied over the bond coat. The wire in the wire mesh causes a shadow effect as the TBC is applied, so that there are variations in the thickness of the applied TBC, forming micro channels. The wire mesh is removed and an additional outer TBC layer is applied over the inner TBC layer, and the variations in thickness are bridged by the continued deposition of the columnar TBC over the inner TBC layer, forming the microgrooves.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: March 4, 2003
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Ramgopal Darolia, Robert Edward Schafrik
  • Patent number: 6499949
    Abstract: The present invention provides active convection cooling through micro channels within or adjacent to a bond coat layer applied to the trailing edge of a turbine engine high pressure airfoil. When placed adjacent to or within a porous TBC, the micro channels additionally provide transpiration cooling through the porous TBC. The micro channels communicate directly with at least one cooling circuit contained within the airfoil from which they receive cooling air, thereby providing direct and efficient cooling for the bond coat layer. Because the substrate includes an actively cooled flow path surface region that can reduce the cooling requirement for the substrate, the engine can run at a higher firing temperature without the need for additional cooling air, achieving a better, more efficient engine performance. In one embodiment, a metallic bond coat is added to an airfoil with pressure side bleed film cooling slots.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: December 31, 2002
    Inventors: Robert Edward Schafrik, Ramgopal Darolia, Ching-Pang Lee