Patents Represented by Attorney, Agent or Law Firm David Denker
  • Patent number: 6171645
    Abstract: This invention has enabled a new, simple nanoporous dielectric fabrication method. In general, this invention uses a polyol, such as glycerol, as a solvent. This new method allows both bulk and thin film aerogels to be made without supercritical drying, freeze drying, or a surface modification step before drying. Prior art aerogels have required at least one of these steps to prevent substantial pore collapse during drying. Thus, this invention allows production of nanoporous dielectrics at room temperature and atmospheric pressure, without a separate surface modification step. Although not required to prevent substantial densification, this new method does not exclude the use of supercritical drying or surface modification steps prior to drying. In general, this new method is compatible with most prior art aerogel techniques. Although this new method allows fabrication of aerogels without substantial pore collapse during drying, there may be some permanent shrinkage during aging and/or drying.
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: January 9, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Douglas M. Smith, William C. Ackerman, Richard A. Stoltz
  • Patent number: 6159829
    Abstract: An enhancement of an electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure during an anneal in an atmosphere containing hydrogen gas. Device operation is enhanced by concluding this anneal step with a sudden cooling. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronics elements on the same silicon substrate.
    Type: Grant
    Filed: April 22, 1998
    Date of Patent: December 12, 2000
    Inventors: William L. Warren, Karel J. R. Vanheusden, Daniel M. Fleetwood, Roderick A. B. Devine, Leo B. Archer, George A. Brown, Robert M. Wallace
  • Patent number: 6159295
    Abstract: An apparatus and method for forming thin film aerogels on semiconductor substrates is disclosed. It has been found that in order to produce defect-free nanoporous dielectrics with a controllable high porosity, it is preferable to substantially limit evaporation and condensation of pore fluid in the wet gel thin film, e.g. during gelation, during aging, and at other points prior to obtaining a dried gel. The present invention simplifies the atmospheric control needed to prevent evaporation and condensation by restricting the atmosphere in contact with the wet gel thin film to an extremely small volume. In one embodiment, a substrate 26 is held between a substrate holder 36 and a parallel plate 22, such that a substantially sealed chamber 32 exists between substrate surface 28 and chamber surface 30. Preferably, the average clearance between surfaces 28 and 30 is less than 5 mm, or more preferably, less than 1 mm. Temperature control means 34 may optionally be used to control the temperature in chamber 32.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: December 12, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Alok Maskara, Teresa Ramos, Douglas M. Smith
  • Patent number: 6140252
    Abstract: This invention provides an improved porous structure for semiconductor devices and a process for making the same. This process may be applied to an existing porous structure 28, which may be deposited, for example, between patterned conductors 24. The method may comprise providing a substrate comprising a microelectronic circuit and a porous silica layer, the porous silica layer having an average pore diameter between 2 and 80 nm; and heating the substrate to one or more temperatures between 100 and 490 degrees C. in a substantially halogen-free atmosphere, whereby one or more dielectric properties of the porous dielectric are improved. In some embodiments, the atmosphere comprises a phenyl-containing atmosphere, such as hexaphenyldisilazane.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: October 31, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Chih-Chen Cho, Bruce E. Gnade, Douglas M. Smith, Jin Changming, William C. Ackerman, Gregory C. Johnston
  • Patent number: 6130152
    Abstract: This invention pertains generally to precursors and deposition methods suited to aerogel thin film fabrication. An aerogel precursor sol which contains an oligomerized metal alkoxide (such as TEOS), a high vapor pressure solvent (such as ethanol) and a low vapor pressure solvent (such as water and 1-butanol) is disclosed. By a method according to the present invention, such a precursor sol is applied as a thin film to a semiconductor wafer, and the high vapor pressure solvent is allowed to evaporate while evaporation of the low vapor pressure solvent is limited, preferably by controlling the atmosphere adjacent to the wafer. The reduced sol is then allowed to gel at a concentration determined by the ratio of metal.alkoxide to low vapor pressure solvent. One advantage of the present invention is that it provides a stable, spinnable sol for setting film thickness and providing good planarity and gap fill for patterned wafers.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: October 10, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Douglas M. Smith, Gregory P. Johnston, William C. Ackerman, Shin-Puu Jeng, Bruce E. Gnade
  • Patent number: 6117689
    Abstract: A structure for, and method of forming, an oxygen diffusion resistant electrode for high-dielectric-constant materials is disclosed. The electrode comprises a single grain of an oxygen stable material over a barrier layer. The single crystal oxygen stable layer is generally substantially impervious to oxygen diffusion at all relevant deposition and annealing temperatures. The disclosed structure is an integrated circuit comprising an array of microelectronic structures, with each of the microelectronic structures comprising an oxidizable layer (e.g., polysilicon 50), a barrier layer (e.g. TiN 64) overlying the oxidizable layer, a single crystal oxygen stable layer (e.g., Pt 98) overlying the barrier layer, and a high-dielectric-constant material layer (e.g., barium strontium titanate 36) overlying the oxygen stable layer.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: September 12, 2000
    Assignee: Texas Instruments Incorporated
    Inventor: Scott R. Summerfelt
  • Patent number: 6111248
    Abstract: A self-contained optical sensor (5) with a device platform (7) and an encapsulating light transmissive housing (9) formed therein is disclosed in conjunction with several sensor configurations including fluorescence-based, surface plasmon resonance based and light transmissive (bio) chemical sensor applications. The sensor (10) has at least one light source (20), a photodetector (25), a power source (18) and a display (50) which are embedded in an encapsulating housing (14). In other embodiments, a signal processing unit (35), converter circuit (30) and wireless Communications means (40, 45) are also included in the housing (14).
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: August 29, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Jose L. Melendez, Richard A. Carr
  • Patent number: 6097479
    Abstract: Disclosed is an integrated miniaturized biochemical sensor (50) which can be used to make critical angle measurements resulting from the differences in refractive index between the sensor's housing (55) and a given sample (40). In one embodiment, the sensor includes a device platform (111) over which an encapsulating and light transmissive housing (115) is formed to enclose the various sensor components including a light source (105), and a photodetector (107), a signal processing unit (95) and a temperature sensor (95). In another embodiment the housing (115) has a reflective mirrored surface (119) which focuses the light (117) from the light source (105) onto a sensing surface (121) which is in interact with the sample (40) of interest. Light incident from the sensing surface (121) is directed at the photodetector (107,159) which may be an array or single cell. A temperature sensor (95) may also be included and coupled to the platform (111).
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: August 1, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Jose L. Melendez, Richard A. Carr, Dwight U. Bartholomew
  • Patent number: 6069084
    Abstract: This is a device and method of forming such, wherein the device has an amorphous "TEFLON" (TFE AF) layer. The device comprising: a substrate; a TFE AF 44 layer on top of the substrate; and a semiconductor layer 42 on top of the TFE AF 44 layer. The device may be an electronic or optoelectronic device. The semiconductor layer may be a metal or other substance.
    Type: Grant
    Filed: April 2, 1998
    Date of Patent: May 30, 2000
    Assignee: Texas Instruments Incorporated
    Inventor: Chih-Chen Cho
  • Patent number: 6064783
    Abstract: A grating (461) coupling the output of a semiconductor laser (410) in a semiconductor waveguide to a dielectric waveguide (451) having a core (458) which may be efficiently butt-coupled to the core of an optical fiber (470); the laser and semiconductor waveguide, coupling grating, and dielectric waveguide are integrated on a single substrate. Further, multiple lasers (410, 420, 430, 440) with differing lasing frequencies may be integrated and their outputs grating coupled into a single dielectric waveguide (450) for wavelength division multiplexing.
    Type: Grant
    Filed: May 25, 1994
    Date of Patent: May 16, 2000
    Inventors: Philip A. Congdon, Lily Y. Pang, Gary A. Evans
  • Patent number: 6063714
    Abstract: This pertains generally to precursors and deposition methods suited to aerogel thin film fabrication of nanoporous dielectrics. A method of forming a nanoporous dielectric on a semiconductor substrate is disclosed. By a method according to the present invention, a precursor sol is applied as a nongelling thin film 14 to a semiconductor substrate 10. This substrate may contain patterned conductors 12, gaps 13, and/or other structures. A portion of the solvent is evaporated from the thin film 14 to produce a reduced thickness film 18. Film 18 is gelled and may be aged. A surface modification agent is introduced to the reaction atmosphere in a vaporish form, e.g., a vapor, mist, aerosol, or similar form. The surface modifier can then diffuse into, condense onto, and/or settle onto the wet gel and then diffuse throughout the thin film. This vaporish introduction of the surface modification agent ensures that there are no strong fluid flows across the wafer that might damage the wet gel.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: May 16, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Douglas M. Smith, Gregory P. Johnston, William C. Ackerman, Shin-Puu Jeng
  • Patent number: 6059451
    Abstract: The present invention is a method and system which determine signal probability and transfer probability for each node in a netlist describing an electrical circuit; determine, using the signal probability and transfer probability, a fault detection probability for each node; and, using the fault detection probabilities, determine overall fault coverage of the electrical circuit described in the netlist. The method and system of the present invention then, using the fault coverage data, heuristically determine a set of testpoints to be inserted into the netlist which increase the overall fault coverage of the electrical circuit above a predetermined value.
    Type: Grant
    Filed: March 20, 1997
    Date of Patent: May 9, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Kyl W. Scott, James M. Skidmore
  • Patent number: 6045756
    Abstract: A miniaturized integrated sensor (50) useful for indicating the presence of a sample analyte is disclosed. The sensor (50) has a platform (52) with an upper surface (53) and a detector (62), light source (60), waveguide (58), and reflective fixtures (60,62) embedded in the platform (52). The light source (60) is preferably a light emitting diode and sits in a cup-shaped dimple (68) that directs light from the light source (60) toward one of the reflective fixtures (64) to uniformly distribute light across the waveguide (58). The waveguide (58) is coupled to an upper surface (53) of the sensor platform (52) and is coated with a thin film of indicator chemistry (70) which interacts with the sample analyte to produce optic signal changes that are measurable by the detector (62). A lead frame (51) in the platform (52) has pins (54, 55, 56) which provide the interface to the outside world.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: April 4, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Richard A. Carr, Jose L. Melendez, Kirk S. Laney
  • Patent number: 6037277
    Abstract: An apparatus and method for forming thin film aerogels on semiconductor substrates is disclosed. It has been found that in order to produce defect.about.free nanoporous dielectrics with a controllable high porosity, it is preferable to substantially limit evaporation and condensation of pore fluid in the wet gel thin film, e.g. during gelation, during aging, and at other points prior to obtaining a dried gel. The present invention simplifies the atmospheric control needed to prevent evaporation and condensation by restricting the atmosphere in contact with the wet gel thin film to an extremely small volume. In one embodiment, a substrate 26 is held between a substrate holder 36 and a parallel plate 22, such that a substantially sealed chamber 32 exists between substrate surface 28 and chamber surface 30. Preferably, the average clearance between surfaces 28 and 30 is less than 5 mm, or more preferably, less than 1 mm.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: March 14, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Alok Masakara, Teresa Ramos, Douglas M. Smith
  • Patent number: 6031869
    Abstract: A method of resolving the frequency ambiguities which result when the instantaneous bandwidth of a digital receiver exceeds the sampling frequency of the digital to analog converter. The frequency ambiguities which result from sampling an input signal below the Nyquist rate are resolved by simultaneously sampling the signal at multiple sample frequencies and then using a lookup table to identify the unique mapping of the common signal into the multiple sample frequency baselines.
    Type: Grant
    Filed: October 9, 1997
    Date of Patent: February 29, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Les Priebe, Mark Philip Swenholt, Ronald Persson
  • Patent number: 6024923
    Abstract: An integrated biochemical sensor (200) for detecting the presence of one or more specific samples (240) having a device platform (355) with a light absorbing upper surface and input/output pins (375) is disclosed. An encapsulating housing (357) provides an optical transmissive enclosure which covers the platform (355) and has a layer of fluorescence chemistry on its outer surface (360). The fluorophore is chosen for its molecular properties in the presence of the sample analyte (240). The detector (370), light sources (365, 367, 407, 409) are all coupled to the platform (355) and encapsulated within the housing (357). A filter (375) element is used to block out unwanted light and increase the detector's (370) ability to resolve wanted emission light.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: February 15, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Jose Melendez, Richard A. Carr, Diane Arbuthnot
  • Patent number: 6020243
    Abstract: A field effect semiconductor device comprising a high permittivity zirconium (or hafnium) silicon-oxynitride gate dielectric and a method of forming the same are disclosed herein. The device comprises a silicon substrate 20 having a semiconducting channel region 24 formed therein. A zirconium silicon-oxynitride gate dielectric layer 36 is formed over this substrate, followed by a conductive gate 38. Zirconium silicon-oxynitride gate dielectric layer 36 has a dielectric constant is significantly higher than the dielectric constant of silicon dioxide. However, the zirconium silicon-oxynitride gate dielectric may also be designed to have the advantages of silicon dioxide, e.g. high breakdown, low interface state density, and high stability.
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: February 1, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Robert M. Wallace, Richard A. Stoltz, Glen D. Wilk
  • Patent number: 6020247
    Abstract: A method of preparing a surface for and forming a thin film on a single-crystal silicon substrate is disclosed. One embodiment of his method comprises forming an oxidized silicon layer (which may be a native oxide) on at least one region of the substrate, and thermally annealing the substrate in a vacuum while supplying a silicon-containing flux to the oxide surface, thus removing the oxidized silicon layer. Preferably, the thin film is formed immediately after removal of the oxidized silicon layer. The silicon-containing flux is preferably insufficient to deposit a silicon-containing layer on top of the oxidized silicon layer, and yet sufficient to substantially inhibit an SiO-forming reaction between the silicon substrate and the oxidized silicon layer. The method of the invention allows for growth or deposition of films which have exceptionally smooth interfaces (less than 0.1 nm rms roughness) with the underlying silicon substrate at temperatures less than 800.degree. C.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: February 1, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Glen D. Wilk, Yi Wei, Robert M. Wallace
  • Patent number: 6013553
    Abstract: A field effect semiconductor device comprising a high permittivity zirconium (or hafnium) oxynitride gate dielectric and a method of forming the same are disclosed herein. The device comprises a silicon substrate 20 having a semiconducting channel region 24 formed therein. A zirconium oxynitride gate dielectric layer 36 is formed over this substrate, followed by a conductive gate 38. Zirconium oxynitride gate dielectric layer 36 has a dielectric constant is significantly higher than the dielectric constant of silicon dioxide.
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: January 11, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Robert M. Wallace, Richard A. Stoltz, Glen D. Wilk
  • Patent number: 5963881
    Abstract: In a system (12) wherein articles are manufactured by a plurality of process steps (20, 22, & 24), a method for identifying causes of variations in performance of the manufactured articles is provided. The method includes tracking orientation data (48) for the articles during each of the process steps (20, 22, & 24) and then measuring (50) performance data for each of the articles. The method also includes preparing surface performance characteristic maps (54) for each of the articles from the performance data and ordering the surface performance characteristic maps (56) for each of the articles in accordance with the orientation data for each article at a given process step (20, 22, & 24).
    Type: Grant
    Filed: October 20, 1997
    Date of Patent: October 5, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Randolph W. Kahn, Hank G. Prosack, Kenneth G. Vickers