Patents Represented by Attorney Francis T. Coppa
  • Patent number: 8349250
    Abstract: A cobalt-nickel alloy composition is described, containing about 20% to about 28% cobalt; about 37% to about 46% nickel; at least about 6% chromium; aluminum; and at least one refractory metal. The total weight of cobalt, aluminum, and refractory metal in the composition is less than about 50% of the total weight of the composition. Moreover, the alloy composition comprises both a (Co, Ni)-gamma phase and an L12-structured (gamma prime) phase. Various components made from the cobalt-nickel alloy composition are also described. Examples include high-temperature machinery and devices, e.g., components of gas turbine engines.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: January 8, 2013
    Assignee: General Electric Company
    Inventors: Akane Suzuki, Michael Francis Xavier Gigliotti, Jr.
  • Patent number: 8343687
    Abstract: A device or system for operating one or more electrochemical cells, such as a rechargeable fuel cell, is provided. A plurality of subsystems include a humidity level control subsystem, a reagent gas delivery subsystem, and a gas scrubbing subsystem. A method for operating the device or system is also provided.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: January 1, 2013
    Assignee: General Electric Company
    Inventors: Jun Cai, Chang Wei, Qunjian Huang, Jinghua Liu, Hai Yang, Shengxian Wang, Rihua Xiong, Andrew Philip Shapiro, Richard Louis Hart
  • Patent number: 8337939
    Abstract: A method of processing a ceramic layer is provided. The method comprises the steps of providing a ceramic layer comprising a plurality of microcracks; infiltrating at least some of the plurality of microcracks with a liquid precursor comprising at least one oxidizable metal ion; and exposing the ceramic layer to a base having a pH value of at least about 9, so as to chemically convert the oxidizable metal ion into an oxide, thereby decreasing the porosity of the ceramic layer. A solid oxide fuel cell is provided. The solid oxide fuel cell comprises an anode; a cathode; and a ceramic electrolyte disposed between the anode and the cathode.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: December 25, 2012
    Assignee: General Electric Company
    Inventors: Todd-Michael Striker, Venkat Subramaniam Venkataramani, James Anthony Ruud
  • Patent number: 8334053
    Abstract: A seal structure is provided for an energy storage device. The seal structure includes a first sealing glass composition and a second sealing glass composition joining an ion-conducting first ceramic to an electrically insulating second ceramic. The first sealing glass composition includes less than or equal to about 20 weight percent silica based on the weight of the first sealing glass composition. The second sealing glass composition includes greater than or equal to about 40 weight percent silica based on the weight of the second sealing glass composition. A method for making the seal structure is provided. An article comprising the seal structure is also provided.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: December 18, 2012
    Assignee: General Electric Company
    Inventors: Andrew Philip Shapiro, Dong-Sil Park, Jian Wu, Craig Stringer
  • Patent number: 8304121
    Abstract: A primary aluminum hydride cell and a battery formed with a plurality of the cells is described herein. The cells are constructed of an anode, a cathode and an aqueous electrolyte, and the anode comprises aluminum hydride and a conductive material. In some embodiments, the cathode comprises an air diffusion cathode.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: November 6, 2012
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, John Patrick Lemmon, Ji-Cheng Zhao
  • Patent number: 8299756
    Abstract: A system and method are provided for battery control of hybrid vehicles such as, but not limited to, hybrid locomotives. The system and method are implemented to sense a present state of charge (SoC) of one or more batteries and generate present SoC data there from, sense a present excursion defined by a relationship represented as maximum SoC?minimum SoC for a desired cycle and generate present excursion data there from, and control the one or more battery power/current charging limits in response to the present SoC data and the present excursion data.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: October 30, 2012
    Assignee: General Electric Company
    Inventors: Monika Chawla, Amol Rajaram Kolwalkar, Ajit Wasant Kane, Ajith Kuttannair Kumar, Stephen Matthew Pelkowski, Lembit Salasoo
  • Patent number: 8282703
    Abstract: A method for recovering at least one rare earth element from a phosphor is presented. The method includes a halogenation step (a) and a reduction step (b). The phosphor is first halogenated in a molten salt to convert at least one rare earth constituent contained therein to a soluble rare earth halide. Then, the rare earth halide in the molten salt can be reduced, to convert the rare earth halide to a rare earth element in its elemental state. A method for individually recovering multiple rare earth elements from a phosphor is also presented.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: October 9, 2012
    Assignee: General Electric Company
    Inventors: Karthick Vilapakkam Gourishankar, Alok Mani Srivastava, Prasanth Kumar Nammalwar, Satya Kishore Manepalli
  • Patent number: 8266911
    Abstract: A premixing device is provided. The premixing device includes an air inlet configured to introduce compressed air into a mixing chamber of the premixing device and a fuel plenum configured to provide a fuel to the mixing chamber via a circumferential slot and over a pre-determined profile adjacent the fuel plenum, wherein the pre-determined profile facilitates attachment of the fuel to the profile to form a fuel boundary layer and to entrain incoming air through the fuel boundary layer to facilitate mixing of fuel and air in the mixing chamber.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: September 18, 2012
    Assignee: General Electric Company
    Inventor: Andrei Tristan Evulet
  • Patent number: 8268504
    Abstract: A planar fuel cell stack is provided. The planar fuel cell stack comprises an anode interconnect structure comprising a corrugated first internal manifold connected to a first anode flowfield; a cathode interconnect structure comprising a corrugated second internal manifold connected to a first cathode flowfield; and a thermally active, surface insulated metallic seal disposed between the corrugated parts of the anode and cathode interconnects, such that the thermally active metallic seal responds upon the application of heat to provide sealing between the anode interconnect structure and the cathode interconnect structure.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: September 18, 2012
    Assignee: General Electric Company
    Inventors: Shu Ching Quek, Andrew Philip Shapiro, Chandra Sekher Yerramalli, Michael Cheadle
  • Patent number: 8216357
    Abstract: In one aspect of the present invention, a UV-protective coating composition is described. The UV protective coating composition includes an acrylate polymer; and a non-crystallizing UV-absorber composition. The non-crystallizing UV absorber composition includes a dibenzoylresorcinol and at least one triazine compound. The dibenzoylresorcinol is present at a level in the range of from about 10 weight percent to about 25 weight percent, based on the total weight of the coating composition. Also provided is an article that includes the UV protective coating composition, and a method to protect the article.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: July 10, 2012
    Assignee: General Electric Company
    Inventor: James Edward Pickett
  • Patent number: 8216323
    Abstract: A system comprises a mixed reforming zone configured to receive a first fuel steam mixture and an oxidant to produce a first reformate stream comprising hydrogen. The system further comprises at least one steam-reforming zone configured to receive the first reformate stream, a first portion of steam and a second fuel to produce a second reformate stream comprising hydrogen. The first reformate stream is mixed with the first portion of steam and second fuel before entering the steam reforming zone.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: July 10, 2012
    Inventors: Ke Liu, Parag Prakash Kulkarni, Gregg Anthony Deluga
  • Patent number: 8202815
    Abstract: In one embodiment, a catalyst composition comprises from about 5 weight percent to about 70 weight percent of silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal. In another embodiment, a method for processing hydrocarbons comprises hydro-treating the hydrocarbons in the presence of a catalyst composition, wherein the catalyst comprises from about 5 weight percent to about 70 weight percent silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: June 19, 2012
    Assignee: General Electric Company
    Inventors: Gregg Anthony Deluga, Daniel Lawrence Derr
  • Patent number: 8193113
    Abstract: Disclosed herein is a composition comprising a complex hydride and a borohydride catalyst wherein the borohydride catalyst comprises a BH4 group, and a group IV metal, a group V metal, or a combination of a group IV and a group V metal. Also disclosed herein are methods of making the composition.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: June 5, 2012
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Matthew John Andrus
  • Patent number: 8191349
    Abstract: A turbine system comprises a compressor for compressing air to generate a compressed flow, an air separation unit for receiving and separating at least a portion of the compressed flow into oxygen and a low-oxygen stream, a combustor for receiving and combusting at least a portion of the low-oxygen stream, a portion of the compressed flow and a fuel to generate a high temperature exhaust gas, and a turbine for receiving and expanding the high temperature exhaust gas to generate electricity and a reduced temperature low-NOx exhaust gas.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: June 5, 2012
    Assignee: General Electric Company
    Inventors: Andrei Tristan Evulet, Ahmed Mostafa Elkady
  • Patent number: 8171732
    Abstract: A device is provided. The device includes an inlet manifold configured to direct an exhaust gas flow within the device, an air inlet configured to introduce an airflow within the device and at least one surface of the device having a Coanda profile configured to entrain incoming air through the exhaust gas flow to generate a high velocity airflow.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: May 8, 2012
    Assignee: General Electric Company
    Inventor: Andrei Tristan Evulet
  • Patent number: 8163434
    Abstract: A method of preparing a solid oxide fuel cell is described herein, as well as the fuel cell itself. The method comprises forming a cathode layer comprising a strontium composition on a ceramic electrolyte layer; and forming a barrier layer between the cathode layer and an overlying interconnect structure comprising chromium, so as to substantially prevent the formation of strontium chromate.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: April 24, 2012
    Assignee: General Electric Company
    Inventors: Anteneh Kebbede, Gabriel Kwadwo Ofori-Okai, Frederic Joseph Klug, Matthew Joseph Alinger, Daniel Joseph Lewis
  • Patent number: 8153052
    Abstract: The present invention provides a method for forming a refractory metal-intermetallic composite. The method includes providing a first powder comprising a refractory metal suitable for forming a metal phase; providing a second powder comprising a silicide precursor suitable for forming an intermetallic phase; blending the first powder and the second powder to form a powder blend; consolidating and mechanically deforming the powder blend at a first temperature; and reacting the powder blend at a second temperature to form the metal phase and the intermetallic phase of the refractory metal-intermetallic composite, wherein the second temperature is higher than the first temperature.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: April 10, 2012
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Judson Sloan Marte, Pazhayannur Ramanathan Subramanian, Ji-Cheng Zhao, Ann Melinda Ritter
  • Patent number: 8137645
    Abstract: A method of recovering a rare earth constituent from a phosphor is presented. The method can include a number of steps (a) to (d). In step (a), the phosphor is fired with an alkali material under conditions sufficient to decompose the phosphor into a mixture of oxides. A residue containing rare earth oxides is extracted from the mixture in step (b). In step (c), the residue is treated to obtain a solution, which comprises rare earth constituents in salt form. Rare earth constituents are separated from the solution in step (d).
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: March 20, 2012
    Assignee: General Electric Company
    Inventors: Digamber Gurudas Porob, Alok Mani Srivastava, Prasanth Kumar Nammalwar, Gopi Chandran Ramachandran, Holly Ann Comanzo
  • Patent number: 8094431
    Abstract: In one aspect of the present invention, a method for increasing the dielectric breakdown strength of a polymer is described. The method comprises providing the polymer and contacting a surface of the polymer in a reaction chamber with a gas plasma, under specified plasma conditions. The polymer is selected from the group consisting of a polymer having a glass transition temperature of at least about 150° C., and a polymer composite comprising at least one inorganic constituent. The contact with the gas plasma is carried out for a period of time sufficient to incorporate additional chemical functionality into a surface region of the polymer film, to provide a treated polymer. Also provided are an article and method of manufacture.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: January 10, 2012
    Assignee: General Electric Company
    Inventors: Daniel Qi Tan, Patricia Chapman Irwin, George Theodore Dalakos, Yang Cao
  • Patent number: 8064566
    Abstract: Disclosed herein is a method comprising heating helium in a core of a nuclear reactor; extracting heat from the helium; superheating water to steam using the heat extracted from the helium, expanding the helium in a turbine; wherein the turbine is in operative communication with an electrical generator; and generating electricity in the electrical generator.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: November 22, 2011
    Assignee: General Electric Company
    Inventor: Andrew Maxwell Peter