Patents Represented by Attorney, Agent or Law Firm Gary P. Katz
  • Patent number: 6674689
    Abstract: A method for analyzing and classifying the morphology of seismic objects extracted from a 3D seismic data volume. Any technique may be used to extract the seismic objects from the 3D seismic data volume. According to the inventive method, one or more morphologic parameters are selected for use in classifying the morphology of the selected seismic objects. Geometric analyses are then performed on each seismic object to determine geometric statistics corresponding to the selected morphologic parameters. The results of these geometric analyses are used to classify the morphology of the seismic objects according to the selected morphologic parameters.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: January 6, 2004
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Paul A. Dunn, Marek K. Czernuszenko
  • Patent number: 6668943
    Abstract: A method and apparatus for controlling the riser base pressure and detecting well control problems, such as kicks or lost circulation, during drilling of an offshore well using a gas-lifted riser. The pressure control apparatus preferably includes two separate control elements, one to adjust the pressure at the surface (prs) and the mass flow rate out of the top of the riser ({dot over (m)}o) to compensate for changes in riser base pressure (prb) and the other to adjust either or both of the boost mud flow rate (qb) and lift gas flow rate (qg) to maintain a constant or nearly constant mass flow rate entering the base of the riser ({dot over (m)}i). According to the method of the present invention, the well return flow rate (qw) is preferably determined by directly measuring various other parameters and then computing qw from the measured parameters. The computed value of qw may be compared to the drill string flow rate (qc) to detect well control problems, such as kicks or lost circulation.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: December 30, 2003
    Assignee: ExxonMobil Upstream Research Company
    Inventors: L. Donald Maus, Torney M. Van Acker, Mark E. Ehrhardt
  • Patent number: 6662872
    Abstract: Steam is injected into the reservoir, heats the reservoir to mobilize and recover at least a fraction of reservoir hydrocarbons, forming a steam chamber in the reservoir. The steam is continuously injected into the reservoir to mobilize and recover reservoir hydrocarbons therefrom until at least one of (i) an upper surface of the chamber has progressed vertically to a position that is approximately 25 percent to 75 percent the distance from the bottom of the injection well to the top of the reservoir, and (ii) the recovery rate of the hydrocarbons is approximately 25 percent to 75 percent of the peak predicted recovery rate using steam-assisted gravity drainage. A viscosity-reducing hydrocarbon solvent is injected into the reservoir, the solvent being capable of existing in vapor form in the chamber and being just below the solvent's saturation pressure in the chamber, mobilizing and recovering additional hydrocarbons from the reservoir.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: December 16, 2003
    Assignee: ExxonMobil Upstream Research Company
    Inventors: A. M. Harold Gutek, Brian Harschnitz, Ronald D. Myers, Tadahiro Okazawa
  • Patent number: 6659180
    Abstract: The well intervention system of the invention is a novel subsea deployed wire line, “stiff wire” (conventional wire-line located inside reeled tubing or embedded in the tubing wall), coil tubing, or reeled pipe unit landed on the existing subsea wellhead assembly or tree, wherein the unit includes as an additional novel component a “carousel” tool caddy. The carousel is utilized to allow the remote change-out of multiple tool strings that are included in the carousel prior to deployment, thereby eliminating the need for a “riser” conduit to the surface or the need to trip tools through the riser column for tool replacement. The subject invention also includes an improved method for conducting a well intervention activity, wherein the method includes the step of selecting a tool for the well intervention activity from a carousel tool caddy located in close proximity to the well.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: December 9, 2003
    Assignee: ExxonMobil Upstream Research
    Inventor: Jeff H. Moss
  • Patent number: 6644406
    Abstract: Method and apparatus for fracturing different levels of a completion interval in a well. A workstring lowers a fracturing string which, in turn, is comprised of a base pipe which is blank except for perforated sections spaced along its length. Screen may be provided over said sections to block the flow of sand into the base pipe. An alternate flow path (e.g. shunt tubes) extends along the base pipe and has one or more outlets spaced along its length. A slurry is flowed into the annulus surrounding the fracturing string. As liquid is lost from the slurry, sand from the slurry will form bridges at said perforated sections thereby isolating portions of the annulus. Slurry then flows through the shunts tube(s) and out into the isolated portions to fracture the different levels in the completion interval.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: November 11, 2003
    Assignee: Mobil Oil Corporation
    Inventor: Lloyd G. Jones
  • Patent number: 6634430
    Abstract: A method of installing tubular conduits (e.g. casing, liners, sand screens) into a highly deviated borehole. A lower plug is attached at one end of a portion of a tubular conduit. This end is inserted into a borehole. After insertion of the length of conduit intended to be buoyancy-aided into the borehole, an inflatable plug insert is attached at the upper end. The inflatable plug has a built-in valve designed to enable fluid communication between the buoyancy-aided tubular section and the insertion string. A pump is attached to the built-in valve and the fluid within the section intended to be buoyancy-aided is removed, after which the built-in valve is closed. The buoyancy provided by the evacuated section enables insertion of the tubular conduit into boreholes greatly deviated from the vertical, reducing running drag and the risk of the tubular becoming differentially stuck.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: October 21, 2003
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Charles R. Dawson, Mark W. Biegler
  • Patent number: 6591193
    Abstract: A method and apparatus for reliable and low-cost acquisition of offset checkshot survey data using tube wave conversion. An acoustic receiver is deployed in a fluid-filled well, preferably at or near the top thereof. At least one tube-wave conversion point is used, such as an interface between two immiscible fluids, a change in casing geometry or a wellbore constriction. The traveltime of a tube wave from the tube-wave conversion point to the acoustic receiver is determined. Then, a seismic signal is generated at a laterally offset location. The total seismic signal traveltime along a raypath from the source location to the tube-wave conversion point and then upwardly through the fluid-filled well to the acoustic receiver is measured. The previously determined tube-wave traveltime from the conversion point to the acoustic receiver is then subtracted from the total traveltime to obtain the seismic signal traveltime from the source location to the tube-wave conversion point.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: July 8, 2003
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jerome R. Krebs, Sen-Tsuen Chen
  • Patent number: 6575247
    Abstract: A device and method for delivering fracture fluid (e.g., erosive materials) into an oilfield wellbore while the well has wireline, coiled tubing, jointed tubing or any other apparatus encumbering the flow path of the erosive fluid that is being injected into the device. The device provides the ability to insert and remove equipment in the wellbore during fluid treatment while maintaining access to the full wellbore diameter. The invention also provides a method for delivery and positive, down-hole displacement of material (i.e., diverting material including, but not limited to buoyant ball sealers).
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: June 10, 2003
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Randy C. Tolman, Curtis Kofoed
  • Patent number: 6393906
    Abstract: A method for evaluating sedimentary basins for hydrocarbon potential using aqueous fluid inclusions. Aqueous fluid inclusions are identified in a rock sample. The homogenization temperatures of the fluid inclusions are determined, the optical spectra of the water and methane in the fluid inclusions are measured, and the formation pressures are estimated from the relationship of homogenization temperature and optical spectrum to formation pressure. Formation pressure of the fluid inclusions can be combined with history of the fluid inclusion formation to reconstruct the paleo-history of the basin to evaluate hydrocarbon potential.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: May 28, 2002
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Maxim O. Vityk, Robert H. Pottorf, Robert J. Chimenti, Patricia H. Kalamaras, Robert J. Bodnar, Jing Leng
  • Patent number: 6374764
    Abstract: An apparatus and method for installing a deck on an offshore substructure is provided. The apparatus comprises a deck supported by lifting mechanisms that are in turn attached to pontoons. The apparatus floats on the water with the lifting mechanisms compressed until transported to an offshore substructure having an upper end located above the water surface. The lifting mechanisms are then extended and the apparatus moved on the surface of the water to position the deck over the substructure. The deck is then lowered onto the substructure and the pontoons are lifted out of the water.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: April 23, 2002
    Assignee: ExxonMobil Upstream Research Company
    Inventors: George F. Davenport, III, Karl H. Runge, J. Don Murff
  • Patent number: 6371695
    Abstract: An offshore structure which is resistant to wave, earthquake and ice loads and can be quickly installed and abandoned in response to changing environmental conditions includes a caisson having an upper section and a lower foundation section which are separated by a structural diaphragm. When installed, the lower foundation section extends downwardly a distance from the seafloor to provide sufficient lateral and vertical soil resistance to resist lateral and vertical loads on the structure. The upper section is adapted to support a deck structure. The structural diaphragm is adapted to rest on the seafloor when an offshore structure has been fully installed to enhance the lateral and vertical load carrying capacity of the offshore structure. During installation, the structural diaphragm and a pump are used to form suction in the lower foundation section, thus enhancing the penetration of the lower foundation section into the seafloor.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: April 16, 2002
    Assignee: ExxonMobil Upstream Research Company
    Inventors: George F. Davenport, III, Karl H. Runge, J. Don Murff
  • Patent number: 6340272
    Abstract: This invention provides a method for constructing an offshore platform by mating a self-floating deck structure with a self-floating substructure. The self-floating deck structure may be a floating pier or barge, on which the desired equipment has been mounted. Mating is achieved by at least partially submerging the substructure, positioning the pier or barge above it, and deballasting the substructure to create a vertical bearing force between the substructure and the pier or barge. Horizontal force may be transmitted between the deck and substructure by a variety of mechanical, structural, and magnetic means.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: January 22, 2002
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Karl H. Runge, George F. Davenport
  • Patent number: 6227296
    Abstract: This invention provides a method for reducing the water saturation in the near-well region. Along with various well treatment possibilities, one application of this invention increases the injectivity rate of a substantially nonaqueous fluid into a subterranean formation. The preferred embodiment uses this invention to increase the injectivity of solvent gas into an oil-bearing formation for enhancing the amount and/or rate of oil recovery from the formation. The method includes injecting a second fluid into the near-well region of the injection well to displace at least a portion of the water from that region. Displacement of the water and subsequent displacement of the secondary fluid allow maximum injectivity for the primary solvent being injected for oil recovery.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: May 8, 2001
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Todd R. Reppert, W. Keith Idol
  • Patent number: 6214175
    Abstract: The present invention provides a process for recovering gas from a clathrate hydrate comprising the steps of: (a) providing a clathrate hydrate within an occupying zone; (b) positioning a source of electromagnetic radiation within said clathrate hydrate occupying zone; and (c) recovering gas from the clathrate hydrate by applying electromagnetic radiation from the electromagnetic radiation source of step (b) to the clathrate hydrate at a frequency within the range of from direct current to visible light at energy density sufficient to dissociate the clathrate hydrate to evolve its constituent gas.
    Type: Grant
    Filed: December 26, 1996
    Date of Patent: April 10, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Robert F. Heinemann, David Da-Teh Huang, Jinping Long, Roland B. Saeger
  • Patent number: 6186230
    Abstract: This invention provides a method for designing a multiple-stage ball sealer-diverted fracture treatment so that only one set of perforations is fractured by each stage of fluid pumped. It further provides a method for predicting the sequencing in which perforated intervals will fracture during treatment.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: February 13, 2001
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Dale E. Nierode