Patents Represented by Attorney John E. Tarcza
  • Patent number: 7270825
    Abstract: The present invention relates to foreign peptide sequences fused to recombinant plant viral structural proteins and a method of their production. Fusion proteins are economically synthesized in plants at high levels by biologically contained tobamoviruses. The fusion proteins of the invention have are useful as antigens for inducing the production of antibodies having desired binding properties, e.g., protective antibodies, or for use as vaccine antigens for the induction of protective immunity against the parvovirus. Feline parvovirus epitopes were fused to the N-terminus of the TMV coat protein, expressed in Nicotiana plants, extracted, purified, characterized and administered to animals, resulting in protective immunity.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: September 18, 2007
    Assignee: Large Scale Biology Corporation
    Inventors: Gregory P. Pogue, John A. Lindbo, Michael J. McCulloch, Jonathan E. Lawrence, Cynthia S. Gross, Stephen J. Garger
  • Patent number: 7179638
    Abstract: Microarrays are prepared by using a separate fiber for each compound being used in the microarray. The fibers are bundled and sectioned to form a thin microarray that may be glued to a backing.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: February 20, 2007
    Assignee: Large Scale Biology Corporation
    Inventors: N. Leigh Anderson, Norman G. Anderson, James A. Braatz
  • Patent number: 7084256
    Abstract: A polypeptide self-antigen useful in a tumor-specific vaccine mimics one or more epitopes of an antigen uniquely expressed by cells of the tumor. The polypeptide is preferably produced in a plant that has been transformed or transfected with nucleic acid encoding the polypeptide and is obtainable from the plant in correctly folded, preferably soluble form without a need for denaturation and renaturation. This plant-produced polypeptide is immunogenic without a need for exogenous adjuvants or other immunostimulatory materials. The polypeptide is preferably an scFv molecule that bears the idiotype of the surface immunoglobulin of a non-Hodgkin's (or B cell) lymphoma. Upon administration to a subject with lymphoma, the plant-produced, tumor-unique scFv polypeptide induces an idiotype-specific antibody or cell-mediated immune response against the lymphoma.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: August 1, 2006
    Assignee: Large Scale Biology Corporation
    Inventors: Alison A. McCormick, Daniel Tusé, Stephen J. Reinl, John A. Lindbo, Thomas H. Turpen
  • Patent number: 7078211
    Abstract: We describe here an in vitro method of increasing complementarity in a heteroduplex polynucleotide sequence. The method uses annealing of opposite strands to form a polynucleotide duplex with mismatches. The heteroduplex polynucleotide is combined with an effective amount of enzymes having strand cleavage activity, 3? to 5? exonuclease activity, and polymerase activity, and allowing sufficient time for the percentage of complementarity to be increased within the heteroduplex. Not all heteroduplex polynucleotides will necessarily have all mismatches resolved to complementarity. The resulting polynucleotide is optionally ligated. Several variant polynucleotides result. At sites where either of the opposite strands has templated recoding in the other strand, the resulting percent complementarity of the heteroduplex polynucleotide sequence is increased. The parent polynucleotides need not be cleaved into fragments prior to annealing heterologous strands. Therefore, no reassembly is required.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: July 18, 2006
    Assignee: Large Scale Biology Corporation
    Inventors: Hal S. Padgett, Andrew A. Vaewhongs
  • Patent number: 7070739
    Abstract: A method for separating microorganisms, especially infectious agents, from a mixture by two dimensional centrifugation on the basis of sedimentation rate and isopycnic banding density, for sedimenting such microorganisms through zones of immobilized reagents to which they are resistant, for detecting banded particles by light scatter or fluorescence using nucleic acid specific dyes, and for recovering the banded particles in very small volumes for characterization by mass spectrometry of viral protein subunits and intact viral particles, and by fluorescence flow cytometric determination of both nucleic acid mass and the masses of fragments produced by restriction enzymes. The method is based on the discovery that individual microorganisms, such as bacterial and viral species, are each physically relatively homogeneous, and are distinguishable in their biophysical properties from other biological particles, and from non-biological particles found in nature.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: July 4, 2006
    Assignee: Large Scale Proteomics Corporation
    Inventors: Norman G. Anderson, N. Leigh Anderson
  • Patent number: 7056740
    Abstract: We describe here restriction endonucleases and their uses. Restriction endonucleases are useful in finding single nucleotide polymorphisms. They are also useful in an in vitro method of redistributing sequence variations between non-identical polynucleotide sequences.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: June 6, 2006
    Assignee: Large Scale Biology Corporation
    Inventors: Hal S. Padgett, Andrew A. Vaewhongs, Fakhrieh S. Vojdani, Mark L. Smith, John A. Lindbo, Wayne P. Fitzmaurice
  • Patent number: 6980674
    Abstract: Data acquisition and cataloging are used to classify polypeptides into a reference index or database. The database can be used to identify previously unidentified samples. New polypeptides are characterized and added to the database.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: December 27, 2005
    Assignee: Large Scale Proteomics Corp.
    Inventors: Norman G. Anderson, N. Leigh Anderson
  • Patent number: 6939453
    Abstract: Highly hydrophobic compounds and hydrophobic proteins are solubilized in a non-aqueous solvent containing an electrolyte for electrophoretic separation. The non-aqueous solvent is an ionic liquid or a mixture of an organic solvent containing an ionic liquid in an amount to render the solvent electrically conductive and amenable for electrophoretic separation. The hydrophobic proteins are separated by electrophoresis using an electrophoresis gel that is compatible with the organic solvent and ionic liquid.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: September 6, 2005
    Assignee: Large Scale Proteomics Corporation
    Inventors: Norman G. Anderson, James A. Braatz
  • Patent number: 6932895
    Abstract: An automated, computer controlled assembly is provided for continuously processing a large number of electrophoresis gels. The assembly includes a loading assembly for loading a gel onto a carrier, a gel staining assembly and a scanning and cutting assembly. The staining assembly and the scanning and cutting assembly each include a robotic arm that is able to capture a gel and transfer the gel to selected work stations and can transfer the gel between the respective robotic arms.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: August 23, 2005
    Assignee: Large Scale Proteomics Corporation
    Inventors: N. Leigh Anderson, Jack Goodman, L. Eric Wallgren
  • Patent number: 6933109
    Abstract: Methods and reagents for rapid purification and/or identification of particles in a liquid sample are described. The technique uses centrifugation to concentrate particles against a slanted surface having an agent specifically binding to the particles. This method is applicable for the rapid identification of viruses and other difficult or impossible to culture microorganisms without replication or amplification of the microorganism.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: August 23, 2005
    Assignee: Large Scale Proteomics Corporation
    Inventor: Norman G. Anderson
  • Patent number: 6911312
    Abstract: A method for separating microorganisms, especially infectious agents, from a mixture by two dimensional centrifugation on the basis of sedimentation rate and isopycnic banding density, for sedimenting such microorganisms through zones of immobilized reagents to which they are resistant, for detecting banded particles by light scatter or fluorescence using nucleic acid specific dyes, and for recovering the banded particles in very small volumes for characterization by mass spectrometry of viral protein subunits and intact viral particles, and by fluorescence flow cytometric determination of both nucleic acid mass and the masses of fragments produced by restriction enzymes. The method is based on the discovery that individual microorganisms, such as bacterial and viral species, are each physically relatively homogeneous, and are distinguishable in their biophysical properties from other biological particles, and from non-biological particles found in nature.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: June 28, 2005
    Assignee: Large Scale Proteomics Corporation
    Inventors: Norman G. Anderson, N. Leigh Anderson
  • Patent number: 6887701
    Abstract: The microarrays of the present invention are prepared by using a separate fiber for each compound being used in the microarray. The fibers are bundled and sectioned to form a thin microarray that is glued to a backing.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: May 3, 2005
    Assignee: Large Scale Proteomics Corporation
    Inventors: Norman G. Anderson, N. Leigh Anderson
  • Patent number: 6846635
    Abstract: Microarrays are prepared by using a separate fiber for each compound being used in the microarray. The fibers are bundled and sectioned to form a thin microarray that is glued to a backing.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: January 25, 2005
    Assignee: Large Scale Proteomics Corp.
    Inventors: Norman G. Anderson, N. Leigh Anderson, James A. Braatz
  • Patent number: 6804410
    Abstract: A mass spectrometry apparatus uses image processing of output signals of a camera in a mass spectrometer to provide feedback for directing the laser. The present invention provides for the determination of where samples have actually been deposited on a plate, and for the selection of different points for each sample, based on its structure, at which to aim a laser, during the cycle period of the mass spectrometer. Such feedback information increases the likelihood that the laser impinges samples and provides useful data.
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: October 12, 2004
    Assignee: Large Scale Proteomics Corporation
    Inventors: John J. Lennon, Anthony James Makusky, Samuel G. Michael
  • Patent number: 6783648
    Abstract: An apparatus for expressing and unloading an isoelectric focusing gel from an electrophoresis gel tube includes a first support for supporting the gel tube, a plunger rod and a second support for supporting the plunger rod. The first support is mounted on a movable carriage and is moved toward the second support so that the gel tube slides onto the plunger rod to unload the gel from the gel tube. A plurality of gel tubes can be mounted in a rack and the rack coupled to the first support. The first support preferably includes a plurality of openings oriented with the gel tubes for guiding a respective plunger rod through the axial passage of the gel tubes. In preferred embodiments, the second support supporting the plunger rods is substantially stationary while the first support moves toward the second support so that the gel tubes slide onto the plunger rods.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: August 31, 2004
    Assignee: Large Scale Proteomics Corporation
    Inventors: N. Leigh Anderson, Jack Goodman
  • Patent number: 6761810
    Abstract: An automated assembly for performing first dimension electrophoresis is described herein that includes a supply magazine, an electrophoresis tank and an automated transferring device that robotically transfers biological samples from sample vials retained in the supply magazine, and delivers the biological samples one by one to tube gels supported in a rack within the electrophoresis tank. The transferring device is configured to move in three dimensions with respect to the supply magazine and the rack for flexible sample delivery.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: July 13, 2004
    Assignee: Large Scale Proteomics Corp.
    Inventors: Andrew McGrath, N. Leigh Anderson, Jack Goodman
  • Patent number: 6758804
    Abstract: Devices and methods for removing portions of gradients relate to a float with an upper concave surface for collecting the gradient portion.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: July 6, 2004
    Assignee: Large Scale Proteomics
    Inventor: Norman G. Anderson
  • Patent number: 6734424
    Abstract: An automated pipetting apparatus and method for forming sample spots on a support include a pipette. A robotic assembly moves a sample container, such as a multiwell microtiter plate, and the support to the pipette for receiving and dispensing liquid samples. The pipette draws a predetermined volume of the liquid sample from the sample container into the axial passage of the pipette and forms a pocket of a gaseous material above and forms a barrier material below the volume of the liquid sample. The liquid sample is drawn into the pipette a distance sufficient to form a space between the liquid sample and the outlet of the pipette and to contain the liquid sample completely within the pipette.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: May 11, 2004
    Assignee: Large Scale Proteomics Corporation
    Inventors: John Lennon, Taraneh Norouzi
  • Patent number: 6730306
    Abstract: The present invention relates to foreign peptide sequences fused to recombinant plant viral structural proteins and a method of their production. Fusion proteins are economically synthesized in plants at high levels by biologically contained tobamoviruses. The fusion proteins of the invention have are useful as antigens for inducing the production of antibodies having desired binding properties, e.g., protective antibodies, or for use as vaccine antigens for the induction of protective immunity against the parvovirus. Feline parvovirus epitopes were fused to the N-terminus of the TMV coat protein, expressed in Nicotiana plants, extracted, purified, characterized and administered to animals, resulting in protective immunity.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: May 4, 2004
    Assignee: Large Scale Biology Corporation
    Inventors: Gregory P. Pogue, John A. Lindbo, Michael J. McCulloch, Jonathan E. Lawrence, Cynthia S. Gross, Stephen J. Garger
  • Patent number: 6713309
    Abstract: The microarrays of the present invention are prepared by using a separate fiber for each compound being used in the microarray. The fibers are bundled and sectioned to form a thin microarray that is glued to a backing.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: March 30, 2004
    Assignee: Large Scale Proteomics Corporation
    Inventors: Norman G. Anderson, N. Leigh Anderson