Patents Represented by Attorney, Agent or Law Firm John F. Schipper
  • Patent number: 8337208
    Abstract: A system of interrogation to estimate whether a subject of interrogation is likely experiencing high stress, emotional volatility and/or internal conflict in the subject's responses to an interviewer's questions. The system applies one or more of four procedures, a first statistical analysis, a second statistical analysis, a third analysis and a heat map analysis, to identify one or more documents containing the subject's responses for which further examination is recommended. Words in the documents are characterized in terms of dimensions representing different classes of emotions and states of mind, in which the subject's responses that manifest high stress, emotional volatility and/or internal conflict are identified. A heat map visually displays the dimensions manifested by the subject's responses in different colors, textures, geometric shapes or other visually distinguishable indicia.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: December 25, 2012
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration
    Inventors: Rajkumar Thirumalainambi, Charles C. Jorgensen
  • Patent number: 8333810
    Abstract: A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: December 18, 2012
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventor: Meyya Meyyappan
  • Patent number: 8332342
    Abstract: This invention develops a mathematical model to describe battery behavior during individual discharge cycles as well as over its cycle life. The basis for the form of the model has been linked to the internal processes of the battery and validated using experimental data. Effects of temperature and load current have also been incorporated into the model. Subsequently, the model has been used in a Particle Filtering framework to make predictions of remaining useful life for individual discharge cycles as well as for cycle life. The prediction performance was found to be satisfactory as measured by performance metrics customized for prognostics for a sample case. The work presented here provides initial steps towards a comprehensive health management solution for energy storage devices.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: December 11, 2012
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Bhaskar Saha, Kai F. Goebel
  • Patent number: 8290246
    Abstract: An instrument and method for measuring the time history of recession of an ablating surface of a test article during testing in a high enthalpy thermal test facility, such as an arcjet. The method advances prior art by providing time-history data over the full ablating surface without targets and without any modifications to the test article. The method is non-intrusive, simple to implement, requires no external light source, and does not interfere with normal operations of the arcjet facility.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 16, 2012
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Edward T. Schairer, James T. Heineck
  • Patent number: 8290696
    Abstract: Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: October 16, 2012
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Banavar Sridhar, Kapil S. Sheth, Gano Broto Chatterji, Karl D. Bilimoria, Shon Grabbe, John F. Schipper
  • Patent number: 8285659
    Abstract: A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: October 9, 2012
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Nilesh V. Kulkarni, John T. Kaneshige, Kalmanje S. Krishnakumar, John J. Burken
  • Patent number: 8244477
    Abstract: Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: August 14, 2012
    Assignees: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA), SETI Institute
    Inventors: Tsegereda N. Embaye, Jonathan D. Trent
  • Patent number: 8224472
    Abstract: A system for managing a project that includes multiple tasks and a plurality of workers. Input information includes characterizations based upon a human model, a team model and a product model. Periodic reports, such as one or more of a monthly report, a task plan report, a schedule report, a budget report and a risk management report, are generated and made available for display or further analysis or collection into a customized report template. An extensible database allows searching for information based upon context and upon content. Seven different types of project risks are addressed, including non-availability of required skill mix of workers. The system can be configured to exchange data and results with corresponding portions of similar project analyses, and to provide user-specific access to specified information.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: July 17, 2012
    Assignee: The United States of America as Represented by he United States National Aeronautics and Space Administration (NASA)
    Inventors: David A. Maluf, Chen-Jung Hsu, Hemil N. Patel, Jairon C. Moh Hashim, Khai Peter B. Tran
  • Patent number: 8200486
    Abstract: Method and system for processing and identifying a sub-audible signal formed by a source of sub-audible sounds. Sequences of samples of sub-audible sound patterns (“SASPs”) for known words/phrases in a selected database are received for overlapping time intervals, and Signal Processing Transforms (“SPTs”) are formed for each sample, as part of a matrix of entry values. The matrix is decomposed into contiguous, non-overlapping two-dimensional cells of entries, and neural net analysis is applied to estimate reference sets of weight coefficients that provide sums with optimal matches to reference sets of values. The reference sets of weight coefficients are used to determine a correspondence between a new (unknown) word/phrase and a word/phrase in the database.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: June 12, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Charles C. Jorgensen, Diana D. Lee, Shane T. Agabon
  • Patent number: 8069001
    Abstract: An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: November 29, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Sergey Gorbunov, Edward R. Martinez, James B. Scott, Tomomi Oishi, Johnny Fu, Joseph G. Mach, Jose B. Santos
  • Patent number: 8000903
    Abstract: Methods for using modified single wall carbon nanotubes (“SWCNTs”) to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., CnH2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 16, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Asministration (NASA)
    Inventor: Jing Li
  • Patent number: 7968054
    Abstract: A system for receiving, analyzing and communicating results of sensing chemical and/or physical parameter values, using wireless transmission of the data. Presence or absence of one or more of a group of selected chemicals in a gas or vapor is determined, using suitably functionalized carbon nanostructures that are exposed to the gas. One or more physical parameter values, such as temperature, vapor pressure, relative humidity and distance from a reference location, are also sensed for the gas, using nanostructures and/or microstructures. All parameter values are transmitted wirelessly to a data processing site or to a control site, using an interleaving pattern for data received from different sensor groups, using I.E.E.E. 802.11 or 802.15 protocol, for example. Methods for estimating chemical concentration are discussed.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: June 28, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventor: Jing Li
  • Patent number: 7949472
    Abstract: Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal or transverse direction at the tip, a polymer sequence is passed through the tip, and a change in an electrical current signal is measured as each polymer component passes through the tip. Each measured change in electrical current signals is compared with a database of reference signals, with each reference signal identified with a polymer component, to identify the unknown polymer component. The tip preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: May 24, 2011
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Viktor Stolc, Mathew W. Brock
  • Patent number: 7939734
    Abstract: Method and system for detecting presence of biomolecules in a selected subset, or in each of several selected subsets, in a fluid. Each of an array of two or more carbon nanotubes (“CNTs”) is connected at a first CNT end to one or more electronics devices, each of which senses a selected electrochemical signal that is generated when a target biomolecule in the selected subset becomes attached to a functionalized second end of the CNT, which is covalently bonded with a probe molecule. This approach indicates when target biomolecules in the selected subset are present and indicates presence or absence of target biomolecules in two or more selected subsets. Alternatively, presence of absence of an analyte can be detected.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 10, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Jun Li, Meyya Meyyappan, Alan M. Cassell
  • Patent number: 7923709
    Abstract: A system for shielding personnel and/or equipment from radiation particles. In one embodiment, a first substrate is connected to a first array or perpendicularly oriented metal-like fingers, and a second, electrically conducting substrate has an array of carbon nanostructure (CNS) fingers, coated with an electro-active polymer extending toward, but spaced apart from, the first substrate fingers. An electric current and electric charge discharge and dissipation system, connected to the second substrate, receives a current and/or voltage pulse initially generated when the first substrate receives incident radiation. In another embodiment, an array of CNSs is immersed in a first layer of hydrogen-rich polymers and in a second layer of metal-like material. In another embodiment, a one- or two-dimensional assembly of fibers containing CNSs embedded in a metal-like matrix serves as a radiation-protective fabric or body covering.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: April 12, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Bin Chen, Christoper P. McKay
  • Patent number: 7875455
    Abstract: A method and system for evaluating status and response of a mineral-producing field (e.g., oil and/or gas) by monitoring selected chemical and physical properties in or adjacent to a wellsite headspace. Nanotechnology sensors and other sensors are provided for one or more underground (fluid) mineral-producing wellsites to determine presence/absence of each of two or more target molecules in the fluid, relative humidity, temperature and/or fluid pressure adjacent to the wellsite and flow direction and flow velocity for the fluid. A nanosensor measures an electrical parameter value and estimates a corresponding environmental parameter value, such as water content or hydrocarbon content. The system is small enough to be located down-hole in each mineral-producing horizon for the wellsite.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: January 25, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Jing Li, Meyya Meyyappan
  • Patent number: 7873181
    Abstract: Method and system for enhancing or extending visual representation of a selected region of a visual image, where visual representation is interfered with or distorted, by supplementing a visual signal with at least one audio signal having one or more audio signal parameters that represent one or more visual image parameters, such as vertical and/or horizontal location of the region; region brightness; dominant wavelength range of the region; change in a parameter value that characterizes the visual image, with respect to a reference parameter value; and time rate of change in a parameter value that characterizes the visual image. Region dimensions can be changed to emphasize change with time of a visual image parameter.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: January 18, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: A. David Maluf
  • Patent number: 7869029
    Abstract: An optical system for receiving and collimating light and for transporting and processing light received in each of N wavelength ranges, including near-ultraviolet, visible, near-infrared and mid-infrared wavelengths, to determine a fraction of light received, and associated dark current, in each wavelength range in each of a sequence of time intervals.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: January 11, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Warren J. Gore
  • Patent number: 7816491
    Abstract: The following application relates to nanotemplates, nanostructures, nanoarrays and nanodevices formed from wild-type and mutated chaperonin polypeptides, methods of producing such compositions, methods of using such compositions and particular chaperonin polypeptides that can be utilized in producing such compositions.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: October 19, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jonathan D. Trent, R. Andrew McMillan, Hiromi Kagawa, Chad D. Paavola
  • Patent number: 7795388
    Abstract: The present invention provides chaperonin polypeptides which are modified to include N-terminal and C-terminal ends that are relocated from the central pore region to various different positions in the polypeptide which are located on the exterior of the folded modified chaperonin polypeptide. In the modified chaperonin polypeptide, the naturally-occurring N-terminal and C-terminal ends are joined together directly or with an intervening linker peptide sequence. The relocated N-terminal or C-terminal ends can be covalently joined to, or bound with another molecule such as a nucleic acid molecule, a lipid, a carbohydrate, a second polypeptide, or a nanoparticle. The modified chaperonin polypeptides can assemble into double-ringed chaperonin structures. Further, the chaperonin structures can organize into higher order structures such as nanofilaments or nanoarrays which can be used to produce nanodevices and nanocoatings.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: September 14, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Chad D. Paavola, Jonathan D. Trent, Suzanne L. Chan, Yi-Fen Li, R. Andrew McMillan, Hiromi Kagawa