Patents Represented by Attorney, Agent or Law Firm John P. Woodridge
  • Patent number: 8303883
    Abstract: The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 6, 2012
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Richard L. Landingham, Joe H. Satcher, Jr., Paul R. Coronado, Theodore F. Baumann
  • Patent number: 6663618
    Abstract: A device is described that can be used by surgeons to provide quick and accurate face-lifting maneuvers that minimize the amount of tissue that has to be removed. The device comprised of a hollow undermining shaft with specially designed tip that can safely separate tissue planes and lyse fibrous tissue. Thermal radiation can be delivered down the shaft to heat and cause tissue contraction. The device can also include a temperature sensor that can be used to control the thermal radiation. Optionally, the device can also use ultrasound or electro surgical energy to improve tissue lysing.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: December 16, 2003
    Assignee: Pearl Technology Holdings, LLC
    Inventors: Paul J. Weber, Luiz B. Da Silva, Alexander M. Rubenchik, Gennady Kochemasov, Stanislav Kulikov
  • Patent number: 6647035
    Abstract: A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: November 11, 2003
    Assignee: The Regents of the University of California
    Inventors: Barry L. Freitas, Jay A. Skidmore
  • Patent number: 6454711
    Abstract: The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: September 24, 2002
    Assignee: The Regents of the University of California
    Inventors: Waleed S. Haddad, James E. Trebes