Patents Represented by Attorney Jordan M. Meschkow & Gresham, P.L.C. Meschkow
  • Patent number: 6151368
    Abstract: A phase-noise compensated digital communication receiver (40, 40', 40") includes a carrier tracking loop (56) which imposes a transport delay on a carrier tracking loop signal (60) before that signal (60) is fed back upon itself. The carrier tracking loop (56) includes a phase rotator (58) that rotates a down-converted digital communication signal (50) by a phase determined by a phase-conveying signal (72). A carrier tracking loop signal is obtained from the carrier tracking loop and delayed in a delay element (82) by a duration that compensates for the transport delay. A phase rotator (84) then rotates the delayed carrier tracking loop signal through a phase value determined by the phase-conveying signal (72) to obtain an open-loop phase signal (86) from which data are extracted. Different embodiments of the receiver (40, 40', 40") are provided to accommodate adaptive equalizer (54) issues.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: November 21, 2000
    Assignee: Sicom, Inc.
    Inventor: Bruce A. Cochran
  • Patent number: 6128282
    Abstract: A node controller (30) within a data communication network (22) provides network access for a digital data stream (32). A processor (42) partitions the digital data stream (32) into a constant data rate component (44) having a predictable data rate and a data packet component (46) having an unpredictable data rate. The constant data rate component (44) is then transferred over a first portion (74) of a network data stream (26) reserved for a circuit transmission protocol, and the data packet component (46) is packetized and transferred over a second portion (76) of the network data stream (26) reserved for a packet transmission protocol.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: October 3, 2000
    Assignee: Sicom, Inc.
    Inventors: John M. Liebetreu, Ronald D. McCallister
  • Patent number: 6104631
    Abstract: A static RAM memory cell (30) uses cross-coupled enhancement mode, N-channel MOS drive transistors (36) to form a bistable flip-flop. A load circuit (34) couples between I/O ports (40) of the drive transistors (36) and Vcc. For each drive transistor (36), the load circuit includes a depletion mode, N-channel MOS load transistor (54) and a forward biased tunnel diode (32). The drain and gate of the load transistor (54) couple across the anode and cathode of the tunnel diode (32) so that the forward voltage (V.sub.f) of the tunnel diode (32) controls the V.sub.gs transfer curve (56) of the load transistor.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: August 15, 2000
    Assignee: National Scientific Corp.
    Inventors: El-Badawy Amien El-Sharawy, Majid M. Hashemi
  • Patent number: 6104761
    Abstract: A constrained-envelope digital-communications transmitter circuit (22) in which a binary data source (32) provides an input signal stream (34), a phase mapper (44) maps the input signal stream (34) into a quadrature phase-point signal stream (50) having a predetermined number of symbols per unit baud interval (64) and defining a phase point (54) in a phase-point constellation (46), a pulse-spreading filter (76) filters the phase-point signal stream (50) into a filtered signal stream (74), a constrained-envelope generator (106) generates a constrained-bandwidth error signal stream (108) from the filtered signal stream (74), a delay element (138) delays the filtered signal stream (74) into a delayed signal stream (140) synchronized with the constrained-bandwidth error signal stream (108), a complex summing circuit (110) sums the delayed signal stream (140) and the constrained-bandwidth error signal stream (108) into a constrained-envelope signal stream (112), and a substantially linear amplifier (146) amplifies
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: August 15, 2000
    Assignee: SiCom, Inc.
    Inventors: Ronald D. McCallister, Bruce A. Cochran, Bradley P. Badke
  • Patent number: 6081690
    Abstract: A bias compensating remote audience survey system (34) is configured to identify radio stations (162) to which tuners (24) are tuned. The tuners (24) have predetermined signals (26) emitted therefrom. The survey system (34) employs a method (152) of compensating for a station bias, or preference, toward or against one or more of radio stations (162). The method (152) includes measuring durations (62) over which the predetermined signals (26) are received by the survey system (34). The durations (62) are then combined by averaging to form a station average detection length (ADL) value (74) specific to one of the radio stations (162). The station ADL value (74) is compared to a multi-station ADL parameter (86). A sensitivity level (146) for the one radio stations (162) is adjusted in response to the comparison to compensate for station bias.
    Type: Grant
    Filed: March 10, 1998
    Date of Patent: June 27, 2000
    Inventor: David G. Worthy
  • Patent number: 6028948
    Abstract: A method (30) is provided for the detection and analysis of anomalies (32) in a road surface (36). An image (34) of the road surface (36) is obtained (82) wherein traffic control markings (76) are masked (88). The image (34) is filtered (90) and a pixel map (92) is produced (98). The pixel map (92) is partitioned (112) into a multiplicity of subimages (108). For each subimage (108), anomaly parameters are identified (120) and a status characteristic is determined (124) and assigned (136). A subimage map (138) is produced (142) depicting the subimages (108) and their status characteristics. A determination (156) is made as to which subimages (108) contain anomalies (32). Anomaly-containing subimages (108) are grouped (158) into anomalous objects (152). For each anomalous object (152), an object type (162) is determined (160) and assigned (164). An object map (154) is then produced (166) depicting the anomalous objects (152).
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: February 22, 2000
    Assignee: Lockheed Martin Corporation
    Inventors: David H. Kil, Frances B. Shin, David W. Rose
  • Patent number: 6005897
    Abstract: A digital communication system (20) communicates using a polar amplitude phase shift keyed (P-APSK) phase point constellation (70, 70'). Pragmatic encoding and puncturing is accommodated. The pragmatic encoding uses the P-APSK constellation (70, 70') to simultaneously communicate both encoded and uncoded information bits. The P-APSK constellation (70, 70') has an even number of phase point rings (74, 76) and equal numbers of phase points (72) in pairs of the rings (74, 76). Encoded bits specify secondary modulation and uncoded bits specify primary modulation. The constellation (70, 70') is configured so that secondary modulation sub-constellations (78) include four phase points (72) arranged so that two of the four phase points (72) exhibit two phase angles at one magnitude and the other two of the four phase points exhibit phase angles that are at another magnitude. The difference between the phase angles at different magnitudes within a secondary sub-constellation (78) is constant.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: December 21, 1999
    Inventors: Ronald D. McCallister, Bruce A. Cochran, John M. Liebetreu
  • Patent number: 5910967
    Abstract: A communication system (11) uses concatenated coding in which an inner code is configured to match the needs of an outer code. The inner code is implemented through a pragmatic trellis coded modulation encoder (18) and decoder (34). A parser (50) of the encoder (18) distributes fewer than one user information bit per unit interval (66) to a convolutional encoder (58) which generates at least two convolutionally encoded bits for each user information bit it processes. Exactly one of the convolutionally encoded bits is phase mapped (56) with at least two user information bits during each unit interval (66). The decoder (34) detects a frame sync pattern (48) inserted into the user information bits to resolve phase ambiguities. Phase estimates are convolutionally decoded (100) to provide decoded data estimates that are then used to selectively rotate the phase estimates prior to routing the phase estimates to a slice detector (118).
    Type: Grant
    Filed: October 20, 1997
    Date of Patent: June 8, 1999
    Assignee: Sicom, Inc.
    Inventor: Mark J. Vanderaar