Patents Represented by Attorney, Agent or Law Firm Kevin D. Wills
  • Patent number: 7783133
    Abstract: An image processing system is arranged to provide rotation compensation and image stabilization in a video scope system such as in endoscopy and laparoscopy systems. The image processing functions may operate at real-time frame rates so that the resulting processed image is observable with no time lag. A rotation sensor is included in the system to sense the position of scope. The sensed scope rotation may be used to cause rotation of the collected image and/or an image displayed on a video monitor. The sensed rotation may be used to identify or calculate a coordinate transformation matrix that is used for processing the image data. The system may include a horizon lock mechanism that can be user-actuated to engage rotation compensation. When the horizon lock mechanism is not engaged, the output image is locked to the scope tip and rotates with rotation of the scope.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: August 24, 2010
    Assignees: Microvision, Inc., Ethicon Endo-Surgery, Inc.
    Inventors: Robert J. Dunki-Jacobs, Frank B. Metting, III, Selso Luanava
  • Patent number: 7777960
    Abstract: A projection system, such as a system suitable for head-up displays in automobiles, includes a laser projection source (101) and a scanner (102). Light from the laser projection source (101) is scanned across a projection surface (104), which can be a car's windshield. The projection surface (104) includes a buried numerical aperture expander (105) capable of reflecting some light and transmitting other light. The system may also include an image projection source (551) capable of presenting high-resolution images on a sub-region (552) of the projection surface (604) that has a optical relay (650) disposed therein.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: August 17, 2010
    Assignee: Microvision, Inc.
    Inventor: Mark O. Freeman
  • Patent number: 7746515
    Abstract: A circuit for detecting a phase error between a clock signal and a beam position includes a beam generator, sensor, and phase detector. The beam generator directs a beam toward a beam sweeper in response to a clock signal. The sensor, which is disposed at a mid line of a region that the beam sweeper scans, detects the beam from the beam sweeper, and the phase detector detects an error in the clock phase from the detected beam. Such a circuit can automatically detect the phase error in the pixel clock and correct this error, thus eliminating the need for a manual phase-error corrector.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: June 29, 2010
    Assignee: Microvision, Inc.
    Inventors: Scott Straka, Jari Honkanen, Philip C. Black, James G. Moore
  • Patent number: 7736006
    Abstract: An image-guiding substrate including an image output portion including a plurality of mirrors configured to receive propagated rays and launch the propagated rays toward a viewing region, each mirror having a partial reflectivity of substantially (1/Y)*[1/(X+1)], where X is the number of mirrors remaining to be traversed by a portion of a ray not launched by the mirror and 1/Y is an occlusion.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: June 15, 2010
    Assignee: Microvision, Inc.
    Inventors: Mark O. Freeman, Karlton D. Powell
  • Patent number: 7717341
    Abstract: Briefly, in accordance with one or more embodiments, a scanner system may scan a target based on a first derivative of a reflectance profile received from a scanned target. Positive and negative threshold values may comprise a static portion and a dynamic portion. The static portion may comprise a constant value, and the dynamic portion may be based at lest in part on a charge profile, or a discharge profile, of a capacitor. The threshold for generating the digital signal may be set lower when the amplitude of the first derivative is lower, and higher when the amplitude of the first derivative is higher.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: May 18, 2010
    Assignee: Microvision, Inc.
    Inventor: Gregory T. Gibson
  • Patent number: 7715103
    Abstract: Briefly, in accordance with one or more embodiments, a buried numerical aperture expander may be utilized to provide a head-up or virtual display at a larger field of view without requiring a larger amount of space, larger sized display, or larger sized optics. The buried numerical aperture expander is capable of selectively reflecting light emanating from a display such that the reflected light is expanded into a larger field of view, while simultaneously allowing other light to be transmitted through the buried numerical aperture expander without expansion so that the buried numerical aperture expander may be deployed in conjunction with a windshield or window without adversely affecting the ability to see through buried numerical aperture expander.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: May 11, 2010
    Assignee: Microvision, Inc.
    Inventors: Randall B. Sprague, Mark O. Freeman, Christian Dean DeJong, Jacques P. Lincoln, Karlton D. Powell
  • Patent number: 7711018
    Abstract: The luminance of a laser diode is a function of laser diode drive current. The luminance is also a function of other factors, such as age and temperature. A laser projection device includes laser diodes to generate light in response to a commanded luminance, and also includes photodiodes to provide a measured luminance. The commanded luminance and measured luminance are compared, and drive currents for the laser diodes are adjusted to compensate for changes in laser diode characteristics.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: May 4, 2010
    Assignee: Microvision, Inc.
    Inventors: Mark Champion, Heng Huang
  • Patent number: 7710655
    Abstract: A display system includes an angle-mapped display engine operable to launch angle-mapped image-bearing rays through an image-guiding substrate for display.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: May 4, 2010
    Assignee: Microvision, Inc.
    Inventors: Mark O. Freeman, Karlton D. Powell
  • Patent number: 7705337
    Abstract: A photo-detector circuit for barcode scanners, endoscopes, and the like, includes a large area PIN photo-diode and an amplifier. Adverse effects associated with a terminal capacitance from the large area PIN diode may be minimized by maintaining a relatively constant voltage across the input terminals of the amplifier. Noise levels may be minimized by the arrangement of the amplifier circuit and the large area PIN diode resulting in an increased signal-to-noise ratio and an increased gain-bandwidth product. Due to the large numerical aperture of the photo-detector, increased resolution and/or lower output power in a reflective imaging system may be obtained with relatively low cost components. Detection area of the large area PIN diode may be larger than approximately 25 mm2 when compared to typical PIN diodes used in photo-detector applications.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: April 27, 2010
    Assignee: Microvision, Inc.
    Inventor: Gregory T. Gibson
  • Patent number: 7690799
    Abstract: Briefly, in accordance with one or more embodiments, an optical relay for a head up display, the optical relay comprises a glare trap having angularly selectivity by being capable of reflecting light having an angle of incidence greater than a first angle, and being capable of transmitting light having an angle of incidence less than a second angle, and a first optic arranged to receive light reflected off the glare trap at an angle of incidence greater than the first angle, and to direct light through the glare trap at an angle of incidence less than the second angle to exit the glare trap.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: April 6, 2010
    Assignee: Microvision, Inc.
    Inventors: Nenad Nestorovic, Joel E. Hegland
  • Patent number: 7679804
    Abstract: Briefly, in accordance with one or more embodiments, a MEMS device for a scanner system may be driven in a non-resonant mode of operation. The drive signal provided to the MEMS device may be tailored to prevent the MEMS device from exhibiting resonance characteristics and to cause the MEMS device to operate non-resonantly. In one or more embodiments, a filter may be used to tailor the frequency components of the drive signal, for example to sufficiently attenuate frequency components at or near the resonant frequency of the drive signal. A direct current signal may be provided to the MEMS device to provide an offset to scanned light beam for example to provide beam steering, and the sweep range and/or sweep frequency may be adjusted for example to steer the scanning field of view off axis from the user pointing axis.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: March 16, 2010
    Assignee: Microvision, Inc.
    Inventors: Dean R. Brown, Wyatt O. Davis, Gregory T. Gibson, Richard A. James
  • Patent number: 7656585
    Abstract: Briefly, in accordance with one or more embodiments, an optical relay comprises a partially-reflective-coated Fresnel lens or similar low-profile lens such as a diffractive lens or a holographic lens having a first index of refraction and a filler medium having a second index of refraction and being disposed adjacent to the Fresnel lens. The optical relay enables the optical power of the Fresnel or similar low-profile lens embedded within the two layers to influence a beam that is reflected from the optical relay while allowing transmitted light to experience little or no influence from the embedded lens.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: February 2, 2010
    Assignee: Microvision, Inc.
    Inventors: Karlton D. Powell, Mark O. Freeman, David Scott Wright
  • Patent number: 7653268
    Abstract: A substrate guided relay (600) includes an input coupler (601), an output coupler (603), and an optical substrate (602). Light is delivered from the input coupler (601) to the optical substrate (602), and then to the output coupler (603). Partially reflective coatings can be used at interfaces (606,607) between components. Partially reflective coatings or other devices (501) can be also used to create one or more copies of light. Light polarization alteration devices (661,662,663,664,665) can be used within the substrate guided relay (600), alone or in combination, to tailor the polarization of light to the designer's needs. Such devices, such as half-wave plates, provide the designer with increased flexibility regarding the design and manufacture of the substrate guided relay (600).
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: January 26, 2010
    Assignee: Microvision, Inc.
    Inventor: Christian Dean DeJong
  • Patent number: 7639209
    Abstract: A scanned light display system includes a light source operable to emit light and a curved mirror positioned to receive at least a portion of the light. The curved mirror is configured to substantially collimate the received light. The substantially collimated light is scanned to form an image by moving at least one of the light source and the curved mirror relative to each other. Alternatively, the scanned light display system includes a light source operable to emit light, a curved mirror positioned to receive some of the light, and an optical element positioned to receive light reflected from the curved mirror. The optical element is configured to substantially collimate the reflected light. The substantially collimated light is scanned to form an image by moving at least one of the light source, the curved mirror, and the optical element. Scanning mirror assemblies and methods of making are also disclosed.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: December 29, 2009
    Assignee: Microvision, Inc.
    Inventors: Randall B. Sprague, Hakan Urey, Dean R. Brown, Margaret K. Brown, John R. Lewis, Mathew D. Watson, Thomas W. Montague, Stephen R. Willey
  • Patent number: 7636101
    Abstract: An electrophotographic printer includes an exposure unit having a MEMS scanner operable to scan a beam of light across a photoconductor. The MEMS scanner includes a mirror having an aspect ratio similar to the shape of the facets of a conventional rotating polygon scanner. In a preferred embodiment, the scan mirror has a length of about 750 microns in a dimension parallel to its axis of rotation and a length of about 8 millimeters in a dimension perpendicular to its axis of rotation. The MEMS scanner is operable to scan at a frequency of about 5 KHz and an angular displacement of about 20 degrees zero-to-peak mechanical scan angle.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: December 22, 2009
    Assignee: Microvision, Inc.
    Inventors: Randall B. Sprague, Wyatt O. Davis, Dean R. Brown, Yoshiro Koga, Nobumasa Abe, Yujiro Nomura
  • Patent number: 7619802
    Abstract: Briefly, in accordance with one or more embodiments, a MEMS device may comprise a coil frame having a drive coil disposed thereon and being supported by one or more suspension arms disposed along an axis of the coil frame, and a mirror platform having a mirror disposed thereon. The mirror platform may be coupled to the coil frame at connection points generally disposed along the axis in order to reduce deflection of the mirror platform to reduce stress on the mirror in order to maintain the relative flatness of the mirror surface. Furthermore, the mirror platform may include flexible members disposed near an edge of the mirror platform generally along the axis to isolate the mirror platform and the mirror from warping of the coil frame and twist of the suspension arms to further maintain the relative flatness of the mirror.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: November 17, 2009
    Assignee: Microvision, Inc.
    Inventors: Dean R. Brown, Wyatt O. Davis, Jason B. Tauscher, David R. Bowman
  • Patent number: 7616366
    Abstract: Briefly, in accordance with one or more embodiments, a coil for a MEMS device, and/or a structure on which the coil is disposed, may have one or more linear segments and one or more non-linear segments. One or more of the non-linear segments may be curved to increase a responsiveness of the coil to the magnetic field in which the coil is operating to provide an increased torque on the rotation of the mirror of the MEMS device in response to a drive signal applied to the coil in the presence of the magnetic field. The non-linear coil may have other shapes and may be any arbitrary shape.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: November 10, 2009
    Assignee: Microvision, Inc.
    Inventors: Dean R. Brown, Wyatt O. Davis, Jason B. Tauscher
  • Patent number: 7613373
    Abstract: An optical relay system (200) includes a scanned light source (206) and a substrate guided relay (204). The substrate guided relay (204) includes an input coupler (201), an output coupler (203), and an optical substrate (202) disposed therebetween. A light homogenizing relay device (208) is disposed between the scanned light source (206) and the substrate guided relay (204). The light homogenizing relay device (208) is configured to receive a light beam (207) from the scanned light source (206). The light homogenizing relay device (208) makes at least one copy (209) of the light beam (207), and delivers the light beam (207) and the at least one copy (209) to a light receiving surface (210) of the input coupler (201), thereby effectively creating a larger input beam while retaining the angular spread of the initial light beam (207).
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: November 3, 2009
    Assignee: Microvision, Inc.
    Inventor: Christian Dean DeJong
  • Patent number: RE41374
    Abstract: A MEMs scanning device has a variable resonant frequency. In one embodiment, the MEMs device includes a torsion arm that supports an oscillatory body. In one embodiment, an array of removable masses are placed on an exposed portion of the oscillatory body and selectively removed to establish the resonant frequency. The material can be removed by laser ablation, etching, or other processing approaches. In another approach, a migratory material is placed on the torsion arm and selectively stimulated to migrate into the torsion arm, thereby changing the mechanical properties of the torsion arm. The changed mechanical properties in turn changes the resonant frequency of the torsion arm. In another approach, symmetrically distributed masses are removed or added in response to a measured resonant frequency to tune the resonant frequency to a desired resonant frequency. A display apparatus includes the scanning device and the scanning device scans about two or more axes, typically in a raster pattern.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: June 15, 2010
    Assignee: Microvision, Inc.
    Inventors: David W. Wine, Mark P. Heisel, Jon D. Barger, Clarence T. Tegreene
  • Patent number: RE41375
    Abstract: A MEMs scanning device has a variable resonant frequency. In one embodiment, the MEMs device includes a torsion arm that supports an oscillatory body. In one embodiment, an array of removable masses are placed on an exposed portion of the oscillatory body and selectively removed to establish the resonant frequency. The material can be removed by laser ablation, etching, or other processing approaches. In another approach, a migratory material is placed on the torsion arm and selectively stimulated to migrate into the torsion arm, thereby changing the mechanical properties of the torsion arm. The changed mechanical properties in turn changes the resonant frequency of the torsion arm. In another approach, symmetrically distributed masses are removed or added in response to a measured resonant frequency to tune the resonant frequency to a desired resonant frequency. A display apparatus includes the scanning device and the scanning device scans about two or more axes, typically in a raster pattern.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: June 15, 2010
    Assignee: Microvision, Inc.
    Inventors: David W Wine, Mark P Helsel, Jon D. Barger, Clarence T. Tegreene