Patents Represented by Attorney Mark C. Lang
  • Patent number: 8329122
    Abstract: A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: December 11, 2012
    Assignee: The United States of America, as represented by the Department of Energy
    Inventor: Matthew G. Watrous
  • Patent number: 8309333
    Abstract: AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: November 13, 2012
    Assignee: The United States of America, as represented by Department of Energy
    Inventors: Daniel J. Koch, Frances H. Arnold
  • Patent number: 8293780
    Abstract: The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: October 23, 2012
    Assignee: U.S. Department of Energy
    Inventors: Andrei A Gakh, Mykhaylo V. Vovk, Nina V. Mel'nychenko, Volodymyr A. Sukach
  • Patent number: 8270554
    Abstract: Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: September 18, 2012
    Assignee: The United States of America, as represented by the United States Department of Energy
    Inventors: David H. Meikrantz, John R. Snyder
  • Patent number: 8242284
    Abstract: The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 14, 2012
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Andrei A. Gakh, Mykhaylo V. Vovk, Nina V. Mel'nychenko, Volodymyr A. Sukach
  • Patent number: 8227105
    Abstract: The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: July 24, 2012
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Rex E. Gerald, II, Katarina J. Ruscic, Devin N. Sears, Luis J. Smith, Robert J. Klingler, Jerome W. Rathke
  • Patent number: 8137700
    Abstract: Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: March 20, 2012
    Assignee: U.S. Department of Energy
    Inventors: Jean M. J. Frechet, Stephany M. Standley, Rachna Jain, Cameron C. Lee
  • Patent number: 8119273
    Abstract: The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: February 21, 2012
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Rex E. Gerald, II, Katarina J. Ruscic, Devin N. Sears, Luis J. Smith, Robert J. Klingler, Jerome W. Rathke
  • Patent number: 8110111
    Abstract: The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: February 7, 2012
    Assignee: U.S. Department of Energy
    Inventors: Yupo J. Lin, Seth W. Snyder
  • Patent number: 8071500
    Abstract: A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or “Thief” carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: December 6, 2011
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Evan J. Granite, Henry W. Pennline
  • Patent number: 7887970
    Abstract: The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: February 15, 2011
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Rex E. Gerald, II, Robert J. Klingler, Jerome W. Rathke
  • Patent number: 7866201
    Abstract: A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: January 11, 2011
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Narinder Kumar Tutu
  • Patent number: 7799225
    Abstract: The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H2O2) from a working solution.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 21, 2010
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Seth W. Snyder, Yupo J. Lin, Jamie A. Hestekin, Michael P. Henry, Peter Pujado, Anil Oroskar, Santi Kulprathipanja, Sarabjit Randhava
  • Patent number: 7776780
    Abstract: Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or “Thief” carbon impregnated with Cl2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: August 17, 2010
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Evan J. Granite, Henry W. Pennline
  • Patent number: 7651673
    Abstract: The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: January 26, 2010
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Zeke Insepov, Ahmed Hassanein
  • Patent number: 7632384
    Abstract: The present invention relates to a multi-functional sensor system that simultaneously measures cathode and anode electrode potentials, dissolved ion (i.e. oxide) concentration, and temperatures in an electrochemical cell. One embodiment of the invented system generally comprises: a reference(saturated) electrode, a reference(sensing) electrode, and a data acquisition system. Thermocouples are built into the two reference electrodes to provide important temperature information.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: December 15, 2009
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Laszlo Redey, Karthick Gourishankar, Mark A. Williamson
  • Patent number: 7632482
    Abstract: The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: December 15, 2009
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Zeke Insepov, Ahmed Hassanein