Patents Represented by Attorney, Agent or Law Firm Michael J. Urbano
  • Patent number: 8320726
    Abstract: Described are multi-tube fabrication techniques for making an optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: November 27, 2012
    Assignee: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Patent number: 8167282
    Abstract: A method of fabricating a glass body that includes a multiplicity of constituents, at least one of which is a dopant (e.g., a rare-earth element) having a low vapor pressure (LVP) precursor includes the steps of: (a) generating an aerosol from the LVP precursor; (b) separately generating vapors of the other constituents; (c) convecting the aerosol and vapors to deposition system including a substrate; and (d) forming at least one doped layer on a surface of the substrate. In one embodiment, the method also includes filtering the aerosol so as to remove aerosol particles outside of a particular range of sizes. Also described is a unique aerosol generator that is particularly useful in generating aerosols of rare-earth dopants. Particular embodiments directed to the fabrication of Yb-doped optical fibers are described.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: May 1, 2012
    Assignee: OFS Fitel, LLC
    Inventors: Anthony Michael DeSantolo, Robert Scott Windeler
  • Patent number: 8107784
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: January 31, 2012
    Assignee: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Patent number: 8069690
    Abstract: A method of fabricating a glass body that includes a multiplicity of constituents, at least one of which is a dopant (e.g., a rare-earth element) having a low vapor pressure (LVP) precursor comprises the steps of: (a) generating an aerosol from the LVP precursor; (b) separately generating vapors of the other constituents; (c) convecting the aerosol and vapors to deposition system including a substrate; and (d) forming at least one doped layer on a surface of the substrate. In one embodiment, the method also includes filtering the aerosol so as to remove aerosol particles outside of a particular range of sizes. Also described is a unique aerosol generator that is particularly useful in generating aerosols of rare-earth dopants. Particular embodiments directed to the fabrication of Yb-doped optical fibers are described.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: December 6, 2011
    Assignee: OFS Fitel, LLC
    Inventors: Anthony Michael DeSantolo, Robert Scott Windeler
  • Patent number: 7920767
    Abstract: The effect of bending is anticipated in an optical fiber design, so that resonant coupling remains an effective strategy for suppressing HOMs. The index profile of the fiber and its bend radius are configured so that there is selective resonant coupling of at least one HOM, but not the fundamental mode, in the bent segment of the fiber. In an illustrative embodiment, the core and cladding regions are configured to support the propagation of signal light in a fundamental transverse mode and at least one higher-order transverse mode in the core region. The cladding region includes an outer cladding region and an annular trench region. The trench region includes at least one axially extending, raised-index pedestal (waveguide) region having a refractive index higher than that of the outer cladding region.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: April 5, 2011
    Assignee: OFS Fitel, LLC
    Inventor: John Michael Fini
  • Patent number: 7916386
    Abstract: Optical apparatus includes a multimode, gain-producing fiber for providing gain to signal light propagating in the core of the fiber, and a pump source for providing pump light that is absorbed in the core, characterized in that (i) the pump source illustratively comprises a low brightness array of laser diodes and a converter for increasing the brightness of the pump light, (ii) the pump light is coupled directly into the core, and (iii) the area of the core exceeds approximately 350 ?m2. In one embodiment, the signal light propagates in a single mode, and the pump light co-propagates in at least the same, single mode, both in a standard input fiber before entering the gain-producing fiber, and a mode expander is disposed between the input fiber and the gain-producing fiber. In another embodiment, multiple pumps are coupled into the core of the gain-producing fiber. The pumps may generate light of the same wavelength or of different wavelengths.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: March 29, 2011
    Assignee: OFS Fitel, LLC
    Inventors: David John DiGiovanni, Clifford Everill Headley
  • Patent number: 7883933
    Abstract: In one embodiment of the invention, a method of fabricating a SAM device comprises the steps of: (a) providing a substrate having a top surface and a first metal electrode disposed on the top surface, (b) annealing the first metal electrode, (c) forming a SAM layer on a major surface of the first electrode, the SAM layer having a free surface such that the SAM is disposed between the free surface and the major surface of the first electrode, and (d) forming a second metal electrode on the free surface of the molecular layer. Forming step (d) includes the step of (d1) depositing the second metal electrode in at least two distinct depositions separated by an interruption period of time when essentially no deposition of the second metal takes place. SAM FETs fabricated using this method are also described.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: February 8, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Nikolai Borisovich Zhitenev
  • Patent number: 7865051
    Abstract: In accordance with one aspect of the invention, the core and cladding regions of a hollow-core optical fiber are configured so that a signal mode is coupled to a cladding mode in order to exploit polarization-dependent properties. In general, the fiber comprises a hollow-core region surrounded by a cladding region, which includes a localized hollow-waveguide region. The core and waveguide regions are configured so that the coupling between a signal mode in the core region and a cladding mode in the waveguide region are phase-matched for efficient coupling, and the phase-matching condition is made polarization-dependent to provide improved control of the fiber's polarization dependent properties.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: January 4, 2011
    Assignee: OFS Fitel, LLC
    Inventor: John Michael Fini
  • Patent number: 7830142
    Abstract: Apparatus comprises a tuning fork having first and second tines, a first magnet disposed on the first tine, and a second magnet disposed on the second tine. In one embodiment the magnets comprise permanent magnets; in another they comprise electromagnets. In a preferred embodiment the magnets have magnetic moments oriented essentially parallel to the axis of the tines and anti-parallel to one another. In operation, the apparatus is made to oscillate at or near its resonant frequency, and in the presence of a magnetic field a parameter of the oscillation (e.g., its frequency, phase or amplitude) is altered in a fashion that allows the magnitude or direction of the magnetic field to be determined. In a preferred embodiment, the tuning fork is disposed within a vacuum enclosure, which increases the Q of the apparatus.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: November 9, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Girsh Elias Blumberg, Brian Scott Dennis
  • Patent number: 7783149
    Abstract: In a LMA optical fiber the index of the core region is graded (i.e., as viewed in a radial cross-section) and has a grading depth of ?ng, as measured from a central maximum at or near the axis to a lower level that is not greater than the central maximum and not less than the index of the cladding region. When the fiber is to be bent at a bend radius, the grading depth, the radius of the core region, and the difference between the central maximum index and the cladding region index are configured to reduce bend distortion. They may also advantageously be configured to maximize the effective mode-field area of the fundamental mode, suppress higher order modes, and reduce bend loss. In a preferred embodiment, the core region includes a centralized gain region, which in turn includes a dark region that is no more than 30% of the area of the gain region. Also described is a method of making such LMA fibers.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: August 24, 2010
    Assignee: Furukawa Electric North America, Inc.
    Inventor: John Michael Fini
  • Patent number: 7619257
    Abstract: An electronic device comprises a body including a single crystal region on a major surface of the body. The single crystal region has a hexagonal crystal lattice that is substantially lattice-matched to graphene, and a at least one epitaxial layer of graphene is disposed on the single crystal region. In a currently preferred embodiment, the single crystal region comprises multilayered hexagonal BN. A method of making such an electronic device comprises the steps of: (a) providing a body including a single crystal region on a major surface of the body. The single crystal region has a hexagonal crystal lattice that is substantially lattice-matched to graphene, and (b) epitaxially forming a at least one graphene layer on that region. In a currently preferred embodiment, step (a) further includes the steps of (a1) providing a single crystal substrate of graphite and (a2) epitaxially forming multilayered single crystal hexagonal BN on the substrate.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: November 17, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Loren Neil Pfeiffer
  • Patent number: 7615779
    Abstract: In one embodiment of the invention, a method of fabricating a SAM device comprises the steps of: (a) providing a substrate having a top surface and a first metal electrode disposed on the top surface, (b) annealing the first metal electrode, (c) forming a SAM layer on a major surface of the first electrode, the SAM layer having a free surface such that the SAM is disposed between the free surface and the major surface of the first electrode, and (d) forming a second metal electrode on the free surface of the molecular layer. Forming step (d) includes the step of (d1) depositing the second metal electrode in at least two distinct depositions separated by an interruption period of time when essentially no deposition of the second metal takes place. SAM FETs fabricated using this method are also described.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: November 10, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Nikolai Borisovich Zhitenev
  • Patent number: 7457500
    Abstract: A large mode area optical fiber is configured to support multiple transverse modes of signal radiation within its core region. The fiber is a hybrid design that includes at least two axial segments having different characteristics. In a first axial segment the transverse refractive index profile inside the core is not radially uniform being characterized by a radial dip in refractive index. The first segment supports more than one transverse mode. In a second axial segment the transverse refractive index profile inside the core is more uniform than that of the first segment. The two segments are adiabatically coupled to one another. Illustratively, the second segment is a terminal portion of the fiber which facilitates coupling to other components. In one embodiment, in the first segment M12>1.0, and in the second segment M22<<M12. In a preferred embodiment, M12>>1.0 and M22˜1.0. In another embodiment, the optical fiber is coupled to a fiber stub.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: November 25, 2008
    Assignee: Furakawa Electric North America, Inc.
    Inventors: Robert Scott Windeler, Andrew Douglas Yablon
  • Patent number: 7421174
    Abstract: A silicate optical fiber comprises a graded index silicate core co-doped with aluminum oxide, phosphorus oxide, germanium oxide and fluorine in unique compositions that we have discovered allow multimode, multi-wavelength operation without significant intermodal dispersion. Illustratively, the core comprises a multiplicity of compositions whose refractive indices are graded from a maximum at or near the center of the core to a minimum at the interface with the cladding. Each core composition resides within a sub-volume of a 5 dimensional phase space in which an optimum core profile shape is essentially constant over the wavelength range of operation of the fiber. For operation in the wavelength range of about 0.78 ?m to 1.55 ?m, each composition preferably comprises no more than approximately 6 mole % Al2O3, 9 mole % P2O5, 6 mole % GeO2, 6 mole % F, and 90-100 mole % SiO2.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: September 2, 2008
    Assignee: Furakawa Electric North America; Inc.
    Inventors: James William Fleming, Jr., George Edward Oulundsen, III
  • Patent number: 7356233
    Abstract: An optical fiber comprises core and cladding regions configured to guide the propagation of light (or radiation) in the core region. The cladding region includes a periodic structure configured to produce light guiding by bandgap confinement. In order to suppress higher order odes (HOMs) in the core region, the cladding region includes at least one perturbation region configured so that a mode of the cladding region is resonant with a HOM of the core region. In a preferred embodiment of my invention, the perturbation region is configured so that the fundamental mode of the cladding region is resonant with a HOM of the core region.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: April 8, 2008
    Assignee: Furakawa Electric North America Inc.
    Inventor: John Michael Fini
  • Patent number: 7116472
    Abstract: A rare-earth-doped optical fiber comprises a silica core region doped with a rare earth element and a cladding region adjacent the core region, characterized in that the core region is also doped with aluminum (Al) and fluorine (F). The presence of small amounts of F are effective to lower the refractive index, and hence the NA, of the core region even in the presence of significant amounts of Al (e.g., >8 mol %). Thus, the fiber has both a relatively flat gain spectrum and a low NA (e.g., <0.20). Also described are optical amplifiers that incorporate such fibers. Preferably the rare earth composition of the core includes at least erbium, and the core is also doped with germanium.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: October 3, 2006
    Assignee: Fitel USA Corp.
    Inventors: Matthew Julius Andrejco, Baishi Wang
  • Patent number: 6635924
    Abstract: A method of fabricating a VRG MOSFET includes the steps of: (a) forming a VRG multilayer stack; (b) forming a trench in the stack; (c) depositing an ultra thin, amorphous semiconductor (&agr;-semic) layer on the sidewalls of the trench (portions of the ultra thin layer on the sidewalls of the trench will ultimately form the channel or ultra thin body (UTB) of the MOSFET); (d) forming a thicker, &agr;-semic sacrificial layer on the ultra thin layer; (e) annealing the &agr;-semic layers to recrystallize them into single crystal layers; (f) selectively removing the recrystallized sacrificial layer; and (g) performing additional steps to complete the VRG MOSFET. In general, the sacrificial layer should facilitate the recrystallization of the ultra thin layer into single crystal material.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: October 21, 2003
    Assignee: Agere Systems Inc.
    Inventors: John Michael Hergenrother, Pranav Kalavade
  • Patent number: 6632728
    Abstract: We have found that under certain prescribed conditions a co-implantation process can be effective in increasing the electrical activation of implanted dopant ions. In accordance with one aspect of our invention, a method of making a semiconductor device includes the steps of providing a single crystal semiconductor body, implanting vacancy-generating, ions into a preselected region of the body, implanting dopant ions into the preselected region, the dopant implant forming interstitial defects in the body, and annealing the body to electrically activate the dopant ions. Importantly, in our method the vacancy-generating implant introduces vacancy defects into the preselected region that are effective to annihilate the interstitial defects. In addition, process steps that amorphize the surface of the implanted region are avoided, and the dose of the vacancy-generating implant is made to be greater than that of the dopant implant.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: October 14, 2003
    Assignee: Agere Systems Inc.
    Inventors: Hans-Joachim Ludwig Gossmann, Conor Stefan Rafferty, Tony E. Haynes, Ramki Kalyanaraman, Vincent C. Venezia, Maria Lourdes Pelaz-Montes
  • Patent number: 6556604
    Abstract: The RT regions of an ISB light emitter comprise pre-biased SLs and a multiplicity of split quantum wells (SPQWs). A SPQW is a quantum well that is divided into a multiplicity of sub-wells by a first barrier layer sufficiently thin that the upper and lower energy states are split beyond their natural broadening and contribute to different minibands in each RT region. In contrast, adjacent SPQWs are coupled to one another by second barrier layers. The thicknesses of the latter layers are chosen so that minibands are created across each RT region. In one embodiment, the emitter includes an I/R region between adjacent RT regions, and in another embodiment the I/R regions are omitted.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: April 29, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Sung-Nee George Chu, Claire F. Gmachl, Albert Lee Hutchinson, Arthur Mike Sergent, Deborah Lee Sivco, Alessandro Tredicucci, Michael Clement Wanke
  • Patent number: 6530074
    Abstract: A method of fabricating an IC includes forming a test circuit in/on the wafer to electrically indicate that a correct mask set was used during a revision of the IC design during the manufacturing process. The readout of the circuit enables the manufacturer to immediately identify that an incorrect mask set was used, thereby preventing any improperly fabricated devices from being shipped to the customer. The test circuit may be located either in a primary device area or in the corridors between the devices (ICs). In either case, the test circuit includes a plurality of test devices, each test device corresponding to a version of the mask set in which at least one mast level modification has been made. In one embodiment the test devices are verification arrays, each array including a multiplicity of n electrical paths electrically connected in parallel with one another and extending across n of the N (n≦N) structural levels of the wafer/IC (e.g., the poly, window and metal levels).
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: March 4, 2003
    Assignee: Agere Systems Inc.
    Inventors: Wayne Andrew Genetti, David George Sotak