Patents Represented by Attorney Mike Jaro
  • Patent number: 7306555
    Abstract: A centrifugal method, and corresponding system, for processing blood to collect platelet rich plasma. A separation chamber is filled with blood from a fill syringe by rotating the separation chamber at a fill rotation rate and pumping the blood from the fill syringe. A soft spin is used to initially separate red blood cells from platelets by spinning the separation chamber at a soft spin rate. A percentage of the blood is drawn from the separation chamber back into the fill syringe to remove separated red blood cells. A second portion of the separated blood is drawn from the separation chamber until a red blood cell/platelet interface is detected. A hard spin is performed by spinning the separation chamber at a higher rate and connecting tubing is cleared of red blood cells by drawing a predetermined clearing volume. The platelet rich plasma is then collected in the collection syringe.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: December 11, 2007
    Assignee: Medtronic, Inc.
    Inventors: Victor D. Dolecek, Gary L. Berg, Kenneth E. Merte, David Malcolm, Kevin D. McIntosh, Vitaly G. Sitko
  • Patent number: 7300463
    Abstract: A fixation band has a tubular frame and a tube, wherein the tubular frame comprises longitudinally-extending members having a hook on its distal end and fixation means on its proximal end. The tubular frame preferably comprises a laterally-extending member for stabilization. The tube is positioned inside longitudinally-extending members and a sewing cuff is formed in the tube distal to the distalmost end of the longitudinally-extending members. A standard prosthetic valve can be secured to the fixation band by suturing the prosthetic valve's sewing cuff to the fixation band's sewing cuff and the prosthetic valve can be advanced to a valve seat. By pulling the tubular frame proximally, the hooks pass into surrounding tissue so that the fixation band and prosthetic valve are fixed against proximal movement. The fixation means then secure the fixation band to the surrounding tissue so that the prosthetic valve is fixed against distal movement.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: November 27, 2007
    Assignee: Medtronic, Inc.
    Inventor: John R. Liddicoat
  • Patent number: 7294312
    Abstract: Improved methods and apparatus that make more accurate and reduces risk of filling reaction chambers of cartridge cells with blood samples to conduct blood coagulation tests of the type employing the plunger technique are disclosed. A cartridge holder is provided that secures a test cartridge in a fixed upright position and deflects the plunger flag of each cartridge cell to enable manual insertion of a blood dispenser deeply into the reaction chamber to fill the reaction chamber and avoid contamination of surfaces of the cartridge outside the reaction chamber. Preferably, the cartridge holder provides illumination of the reaction chamber during filling, so that the user can judge when the reaction chamber is properly filled with blood dispensed from the blood dispenser. The cartridge holder may incorporate image magnification to facilitate viewing of the reaction chamber as it is filled.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: November 13, 2007
    Assignee: Medtronic, Inc.
    Inventors: Michael M. Green, Douglas D. Nippoldt, William D. Zillmann, Brent E. Wallace, Jeff N. Rejent
  • Patent number: 7294143
    Abstract: Methods for delivering precise amounts of fluid into cardiac tissue for the purpose of facilitating ablation of the tissue along a desired lesion line. One method injects fluid through a hollow needle. The injected fluid can be a highly conductive fluid injected in conjunction with radiofrequency ablation to create an ablative virtual electrode. The injected conductive fluid can provide deeper and narrower conduction paths and resulting lesions. Radiofrequency ablation can be performed at the same time as the fluid injection, using the injection device as an electrode, or subsequent to the fluid injection, using a separate device. In some methods, the injected fluid is a protective fluid, injected to protect tissue adjacent to the desired lesion line. Fluid delivery can be endocardial, epicardial, and epicardial on a beating heart. The present methods find one use in performing maze procedures to treat atrial fibrillation.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: November 13, 2007
    Assignee: Medtronic, Inc.
    Inventor: David E. Francischelli
  • Patent number: 7285235
    Abstract: Methods and devices for manufacturing a conduit for placing a target vessel in fluid communication with a source of blood, such as a heart chamber containing blood. The conduit includes first and second portion adapted to be placed in fluid communication with a heart chamber and a target vessel. The conduit lies on the exterior of the myocardium between the blood source and the target vessel and delivers blood in multiple directions within the lumen of the target vessel. The conduit, which may be formed of any suitable synthetic vascular graft material, is generally T-shaped with the leg having two free ends disposed in the target vessel, preferably being secured thereto via a suture-free attachment. The conduit comprises vascular graft material and may be manufactured various ways, such as molding a conduit from any suitable biocompatible material or fabricating a conduit from one or more pieces of vascular graft material.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: October 23, 2007
    Assignee: Medtronic, Inc.
    Inventors: Alan R. Rapacki, Dean F. Carson, A. Adam Sharkawy
  • Patent number: 7276055
    Abstract: A method of performing minimally invasive cardiac surgery includes the step of creating an access aperture into a patient's chest cavity, the access aperture being considerably smaller than a traditional cardiac surgery incision. A cannula is provided that has an oval portion with a longer major axis and a shorter minor axis and the cannula is inserted into the chest cavity through the access aperture.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: October 2, 2007
    Assignee: Medtronic, Inc.
    Inventors: David B. DeWindt, Ronald A. Devries, Steven R. Gundry, William E. Sidor
  • Patent number: 7252758
    Abstract: A centrifugal method, and corresponding system, for processing blood to collect platelet rich plasma. A separation chamber is filled with blood from a fill syringe by rotating the separation chamber at a fill rotation rate and pumping the blood from the fill syringe. A soft spin is used to initially separate red blood cells from platelets by spinning the separation chamber at a soft spin rate. A percentage of the blood is drawn from the separation chamber back into the fill syringe to remove separated red blood cells. A second portion of the separated blood is drawn from the separation chamber until a red blood cell/platelet interface is detected. A hard spin is performed by spinning the separation chamber at a higher rate and connecting tubing is cleared of red blood cells by drawing a predetermined clearing volume. The platelet rich plasma is then collected in the collection syringe.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: August 7, 2007
    Assignee: Medtronic, Inc.
    Inventors: Victor D. Dolecek, Gary L. Berg, Kenneth E. Merte, David Malcolm, Kevin D. McIntosh, Vitaly G. Sitko
  • Patent number: 7250051
    Abstract: A method for ablation in which a portion of atrial tissue around the pulmonary veins of the heart is ablated by a first elongated ablation component and a second elongated ablation component movable relative to the first ablation component and having means for magnetically attracting the first and second components toward one another. The magnetic means draw the first and second components toward one another to compress the atrial tissue therebetween, along the length of the first and second components and thereby position the device for ablation of the tissue.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: July 31, 2007
    Assignee: Medtronic, Inc.
    Inventor: David E. Francischelli
  • Patent number: 7250048
    Abstract: A system and method for creating lesions and assessing their completeness or transmurality. Assessment of transmurality of a lesion is accomplished by monitoring the impedance of the tissue to be ablated. Rather than attempting to detect a desired drop or a desired increase impedance, completeness of a lesion is detected in response to the measured impedance remaining at a stable level for a desired period of time, referred to as an impedance plateau. The mechanism for determining transmurality of lesions adjacent individual electrodes or pairs may be used to deactivate individual electrodes or electrode pairs, when the lesions in tissue adjacent these individual electrodes or electrode pairs are complete, to create an essentially uniform lesion along the line of electrodes or electrode pairs, regardless of differences in tissue thickness adjacent the individual electrodes or electrode pairs.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: July 31, 2007
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Scott E. Jahns
  • Patent number: 7247488
    Abstract: A method and kit for testing a multi-channel blood-testing cartridge. In particular, blood-testing cartridges are tested with plasma samples with clotting times measured to indicate whether a batch of cartridges is suitable for testing the blood of a patient.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: July 24, 2007
    Assignee: Medtronic, Inc.
    Inventors: Jyotsna Ghai, Mark A. Thompson, Colleen Lutz, Narayanan Ramamurthy, Charlene X. Yuan
  • Patent number: 7241300
    Abstract: Anastomotic components may be attached to hollow bodies or vessels by magnetic or mechanical force to create an anastomosis, form a port in a vessel, or repair a diseased vessel lumen. Anastomoses are created by coupling a first connection to an end of a vessel and then attracting it to a second connector secured to the side wall of another vessel. The connection between the first and second connectors may be solidly magnetic, solely mechanical, or a combination thereof. Also disclosed are methods and devices for treating diseased vessel lumens, for example abdominal aortic aneurysm. A plurality of docking members is attached to the vessel at solicited positions, and then one or more grafts is secured to the docking members in any suitable manner.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: July 10, 2007
    Assignee: Medtronic, Inc,
    Inventors: A. Adam Sharkawy, J. Greg Stine, David H. Cole, Samuel Crews, Darin C. Gittings, Adam Kessler, Mark J. Foley
  • Patent number: 7232449
    Abstract: Anastomotic components may be attached to hollow bodies or vessels by magnetic or mechanical force to create an anastomosis, form a port in a vessel, or repair a diseased vessel lumen. Anastomoses are created by coupling a first connection to an end of a vessel and then attracting it to a second connector secured to the side wall of another vessel. The connection between the first and second connectors may be solidly magnetic, solely mechanical, or a combination thereof. Also disclosed are methods and devices for treating diseased vessel lumens, for example abdominal aortic aneurysm. A plurality of docking members is attached to the vessel at solicited positions, and then one or more grafts is secured to the docking members in any suitable manner.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: June 19, 2007
    Assignee: Medtronic, Inc.
    Inventors: A. Adam Sharkawy, J. Greg Stine, David H. Cole, Samuel Crews, Darin C. Gittings, Adam Kessler, Mark J. Foley
  • Patent number: 7214234
    Abstract: Devices and methods for delivering conduits into the wall of a patient's heart to communicate a coronary vessel with a heart chamber. The devices are passed through the coronary vessel and the heart wall to place the conduit and establish a blood flow path between the vessel and the heart chamber. Additional devices and methods are provided for removing tissue from a coronary vessel or the heart wall to establish a flow path between the coronary vessel in communication with the heart chamber.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: May 8, 2007
    Assignee: Medtronic, Inc.
    Inventors: Alan R. Rapacki, Darin C. Gittings, Gilbert S. Laroya, Mark J. Foley
  • Patent number: 7204958
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: April 17, 2007
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Frederick A. Shorey, Laura A. Yonce, Mark D. Stringham
  • Patent number: 7201716
    Abstract: The invention is a method and apparatus for performing beating heart surgery, in which a single articulating arm supports multiple suction pods. Once the suction pods are applied to the heart surface, tightening a cable fixes the arm in place. Then, the suction pods may be spread apart from each other to tighten the surface of the cardiac tissue lying between the suction pods. In one embodiment, fixation of the arm as well as the spreading apart of the suction pods may occur concurrently or almost concurrently through the tensioning of a single cable. Additional embodiments of the method, system and its components are shown.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: April 10, 2007
    Assignee: Medtronic, Inc.
    Inventors: Eric Boone, Jack Goodman, John D. Hall, Vincent J. Testa, Eric Vroegop, William G. O'Neill, Cornelius Borst, Hendricus J. Mansvelt-Beck, Paul F. Grundeman
  • Patent number: 7201870
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: April 10, 2007
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Mark D. Stringham
  • Patent number: 7198751
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: April 3, 2007
    Assignee: Medtronic, Inc.
    Inventors: Walter L. Carpenter, Robert W. Olsen, Stefanie Heine, Frederick A. Shorey, Jr., Laura A. Yonce
  • Patent number: 7189231
    Abstract: Methods and apparatus employed in surgery involving making precise incisions in vessels of the body, particularly cardiac blood vessels in coronary revascularization procedures conducted on the stopped or beating heart are disclosed. Such incisions are created by applying an elongated electrosurgical cutting electrode to the outer surface of the vessel wall in substantially parallel alignment with the body vessel axis, the elongated electrosurgical cutting electrode having a predetermined cutting electrode length exceeding the cutting electrode width. RF energy is applied between the electrosurgical cutting electrode and the ground electrode at an energy level and for a duration sufficient to cut an elongated slit through the vessel wall where the elongated electrosurgical cutting electrode is applied to the surface of the vessel wall.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: March 13, 2007
    Assignee: Medtronic, Inc.
    Inventors: Cynthia T. Clague, Philip J. Haarstad, Scott E. Jahns, James R. Keogh, Christopher P. Olig, Raymond W. Usher
  • Patent number: 7189201
    Abstract: A method and apparatus for temporarily immobilizing a local area of tissue. In particular, the present invention provides a method and apparatus for temporarily immobilizing a local area of tissue within a patient's body cavity. In one embodiment, the tissue immobilized is heart tissue to thereby permit surgery on a coronary vessel in that area without significant deterioration of the pumping function of the beating heart. The local area of heart tissue is immobilized to a degree sufficient to permit minimally invasive or micro-surgery on that area of the heart.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 13, 2007
    Assignee: Medtronic, Inc.
    Inventors: Cornelius Borst, Hendricus J. Mansvelt Beck, Paul F. Grundeman, Cornelis Wilhelmus Jozef Verlaan
  • Patent number: 7189352
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: March 13, 2007
    Assignee: Medtronic, Inc.
    Inventors: Walter L. Carpenter, Robert W. Olsen, Frederick A. Shorey, Jr., Mark G. Bearss, Bruce R. Jones, Laura A. Yonce