Patents Represented by Attorney Porter Hedges LLP
  • Patent number: 7964156
    Abstract: Solvent extraction is used to remove wax and contaminants from an iron-based Fischer-Tropsch catalyst in a natural circulation continuous-flow system. The wax-free catalyst is then subjected to controlled oxidation to convert the iron to its initial oxidized state, Fe203. Reactivation of the oxide catalyst precursor is carried out by addition of synthesis gas.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: June 21, 2011
    Assignee: Rentech, Inc.
    Inventors: Belma Demirel, Mark S. Bohn, Charles B. Benham, James E. Siebarth, Mark D. Ibsen
  • Patent number: 7922901
    Abstract: A system for treating feedwater to remove contaminants therefrom, the system comprising at least one high shear mixing device comprising at least one generator comprising a rotor and a stator separated by a shear gap, wherein the shear gap is the minimum distance between the rotor and the stator, and wherein the high shear mixing device is capable of producing a tip speed of the rotor of greater than 22.9 m/s (4,500 ft/min) and a pump configured for delivering feedwater and treatment gas selected from oxygen, air, and chlorine to the high shear mixing device.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: April 12, 2011
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Patent number: 7922907
    Abstract: A method for removing contaminant from feedwater by forming a dispersion comprising bubbles of a treatment gas in a continuous phase comprising feedwater, wherein the bubbles have a mean diameter of less than about 5 ?m and wherein the treatment gas is selected from the group consisting of air, oxygen, and chlorine. A method for removing contaminants from a feedwater by subjecting a fluid mixture comprising feedwater and a treatment gas to a shear rate greater than 20,000 s?1 in a high shear device to produce a dispersion of treatment gas in a continuous phase of the feedwater. A system for treating feedwater to remove contaminants therefrom is also presented, the system comprising at least one high shear mixing device comprising at least one generator comprising a rotor and a stator separated by a shear gap; and a pump configured for delivering feedwater and treatment gas to the high shear mixing device.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: April 12, 2011
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Aziz Hassan, Gregory G. Borsinger
  • Patent number: 7922900
    Abstract: A system for treating feedwater to remove contaminants therefrom, the system comprising at least one high shear mixing device comprising at least one generator comprising a rotor and a stator separated by a shear gap, wherein the shear gap is the minimum distance between the rotor and the stator, and wherein the high shear mixing device is capable of producing a tip speed of the rotor of greater than 22.9 m/s (4,500 ft/min) and a pump configured for delivering feedwater and treatment gas selected from oxygen, air, and chlorine to the high shear mixing device.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: April 12, 2011
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Patent number: 7919645
    Abstract: A system and method for a high shear mechanical device incorporated into a process for the production of acetic anhydride as a reactor device is shown to be capable of decreasing mass transfer limitations, thereby enhancing the process. A system for the production of acetic anhydride including the mixing of catalyst and acetic acid via a high shear device.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: April 5, 2011
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Patent number: 7919065
    Abstract: A gasification plant and methods for producing ammonia, Fischer-Tropsch fuels, electrical power, and/or sulfur from carbon-bearing feedstocks including coal and/or petroleum coke. Methods for production of desired relative amounts of ammonia and Fischer-Tropsch liquid hydrocarbons by adjusting the amount of synthesis gas bypassing the Fischer-Tropsch reactor. The multi-product and integrated plants may be used to reduce the amount of CO2 vented into the atmosphere during the production of these products.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 5, 2011
    Assignee: Rentech, Inc.
    Inventors: Peter S. Pedersen, Dennis L. Yakobson
  • Patent number: 7919431
    Abstract: A composition and method for preparation of a catalyst for the liquid phase selective hydrogenation of alkynes to alkenes with high selectivity to alkenes relative to alkanes, high alkyne conversion, and sustained catalytic activity comprising a Group VIII metal and a Group IB, Group IIB, Group IIIA, and/or Group VIIB promoter on a particulate support.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: April 5, 2011
    Inventors: Marvin M. Johnson, Edward R. Peterson, Sean C. Gattis
  • Patent number: 7914744
    Abstract: Methods and systems for the preparation of chlorohydrins are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins into the chlorinating phase. The high shear device may allow for lower reaction temperatures and pressures and may also reduce chlorination time.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: March 29, 2011
    Assignee: Synfuels International, Inc.
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Patent number: 7915463
    Abstract: A process for converting natural gas to liquid hydrocarbons comprising heating the gas through a selected range of temperature for sufficient time and/or combustion of the gas at a sufficient temperature and under suitable conditions for a reaction time sufficient to convert a portion of the gas stream to reactive hydrocarbon products, primarily ethylene or acetylene. The gas containing acetylene may be separated such that acetylene is converted to ethylene. The ethylene product(s) may be reacted in the presence of an acidic catalyst to produce a liquid, a portion of which will be predominantly naphtha or gasoline. A portion of the incoming natural gas or hydrogen produced in the process may be used to heat the remainder of the natural gas to the selected range of temperature. Reactive gas components are used in a catalytic liquefaction step and/or for alternate chemical processing.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: March 29, 2011
    Assignee: Synfuels International, Inc.
    Inventors: Sean C. Gattis, Edward R. Peterson
  • Patent number: 7915193
    Abstract: A method of activating an iron Fischer-Tropsch catalyst by introducing an inert gas into a reactor comprising a slurry of the catalyst at a first temperature, increasing the reactor temperature from the first temperature to a second temperature at a first ramp rate, wherein the second temperature is in the range of from about 150° C. to 250° C., introducing synthesis gas having a ratio of H2:CO to the reactor at a space velocity, and increasing the reactor temperature from the second temperature to a third temperature at a second ramp rate, wherein the third temperature is in the range of from about 270° C. to 300° C. The iron Fischer-Tropsch catalyst may be a precipitated unsupported iron catalyst, production of which is also provided.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: March 29, 2011
    Assignee: Rentech, Inc.
    Inventors: Belma Demirel, Charles B. Benham, Dan Fraenkel, Richard Bley, Jesse W. Taylor, Bahman Rejai, Sara Rolfe, Harold A. Wright
  • Patent number: 7915461
    Abstract: A process for converting natural gas to liquid hydrocarbons comprising heating the gas through a selected range of temperature for sufficient time and/or combustion of the gas at a sufficient temperature and under suitable conditions for a reaction time sufficient to convert a portion of the gas stream to reactive hydrocarbon products, primarily ethylene or acetylene. The gas containing acetylene may be separated such that acetylene is converted to ethylene. The ethylene product(s) may be reacted in the presence of an acidic catalyst to produce a liquid, a portion of which will be predominantly naphtha or gasoline. A portion of the incoming natural gas or hydrogen produced in the process may be used to heat the remainder of the natural gas to the selected range of temperature. Reactive gas components are used in a catalytic liquefaction step and/or for alternate chemical processing.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: March 29, 2011
    Assignee: Synfuels International, Inc.
    Inventors: Sean C. Gattis, Edward R. Peterson
  • Patent number: 7915465
    Abstract: A process for converting natural gas to liquid hydrocarbons comprising heating the gas through a selected range of temperature for sufficient time and/or combustion of the gas at a sufficient temperature and under suitable conditions for a reaction time sufficient to convert a portion of the gas stream to reactive hydrocarbon products, primarily ethylene or acetylene. The gas containing acetylene may be separated such that acetylene is converted to ethylene. The ethylene product(s) may be reacted in the presence of an acidic catalyst to produce a liquid, a portion of which will be predominantly naphtha or gasoline. A portion of the incoming natural gas or hydrogen produced in the process may be used to heat the remainder of the natural gas to the selected range of temperature. Reactive gas components are used in a catalytic liquefaction step and/or for alternate chemical processing.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: March 29, 2011
    Assignee: Synfuels International, Inc.
    Inventors: Sean C. Gattis, Edward R. Peterson
  • Patent number: 7915464
    Abstract: A process for converting natural gas to liquid hydrocarbons comprising heating the gas through a selected range of temperature for sufficient time and/or combustion of the gas at a sufficient temperature and under suitable conditions for a reaction time sufficient to convert a portion of the gas stream to reactive hydrocarbon products, primarily ethylene or acetylene. The gas containing acetylene may be separated such that acetylene is converted to ethylene. The ethylene product(s) may be reacted in the presence of an acidic catalyst to produce a liquid, a portion of which will be predominantly naphtha or gasoline. A portion of the incoming natural gas or hydrogen produced in the process may be used to heat the remainder of the natural gas to the selected range of temperature. Reactive gas components are used in a catalytic liquefaction step and/or for alternate chemical processing.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: March 29, 2011
    Assignee: Synfuels International, Inc.
    Inventors: Sean C. Gattis, Edward R. Peterson
  • Patent number: 7915466
    Abstract: A process for converting natural gas to liquid hydrocarbons comprising heating the gas through a selected range of temperature for sufficient time and/or combustion of the gas at a sufficient temperature and under suitable conditions for a reaction time sufficient to convert a portion of the gas stream to reactive hydrocarbon products, primarily ethylene or acetylene. The gas containing acetylene may be separated such that acetylene is converted to ethylene. The ethylene product(s) may be reacted in the presence of an acidic catalyst to produce a liquid, a portion of which will be predominantly naphtha or gasoline. A portion of the incoming natural gas or hydrogen produced in the process may be used to heat the remainder of the natural gas to the selected range of temperature. Reactive gas components are used in a catalytic liquefaction step and/or for alternate chemical processing.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: March 29, 2011
    Assignee: Synfuels International, Inc.
    Inventors: Sean C. Gattis, Edward R. Peterson
  • Patent number: 7915462
    Abstract: A process for converting natural gas to liquid hydrocarbons comprising heating the gas through a selected range of temperature for sufficient time and/or combustion of the gas at a sufficient temperature and under suitable conditions for a reaction time sufficient to convert a portion of the gas stream to reactive hydrocarbon products, primarily ethylene or acetylene. The gas containing acetylene may be separated such that acetylene is converted to ethylene. The ethylene product(s) may be reacted in the presence of an acidic catalyst to produce a liquid, a portion of which will be predominantly naphtha or gasoline. A portion of the incoming natural gas or hydrogen produced in the process may be used to heat the remainder of the natural gas to the selected range of temperature. Reactive gas components are used in a catalytic liquefaction step and/or for alternate chemical processing.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: March 29, 2011
    Assignee: Synfuels International, Inc.
    Inventors: Sean C. Gattis, Edward R. Peterson
  • Patent number: 7914745
    Abstract: Methods and systems for the hydrogenation of aldehydes and/or ketones are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of the hydrogen-containing gas (e.g. H2 gas) in the aldehydes and/or ketones. The high shear device may allow for lower reaction temperatures and pressures and may also reduce hydrogenation time with existing catalysts.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: March 29, 2011
    Assignee: Synfuels International, Inc.
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Azziz Hassan
  • Patent number: 7910069
    Abstract: Methods and systems for preparing alkylene glycols are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of alkylene oxides with water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: March 22, 2011
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Patent number: 7910068
    Abstract: Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: March 22, 2011
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Patent number: 7910758
    Abstract: Hydrogenated vegetable oil exhibiting superior thermal stability and containing reduced levels of saturates and trans fatty acids are produced using an activated hydrogenation catalyst and/or an improved hydrogenation process incorporating high shear. The use of a high shear mechanical device incorporated into the hydrogenation process as a reactor device is shown to be capable of enabling reactions that would normally not be feasible under a given set of reaction pressure and temperature conditions. For example, the hydrogenation process described herein enables a reduction of hydrogenation time, and operation at lower temperatures than current processes. The resulting hydrogenated vegetable oil is particularly useful in frying, confectionery baking, and other applications where a product with a low trans fat content or higher thermal stability is desirable. The hydrogenated oil produced may comprise less than 10 weight % of trans fatty acids with less than 5 weight % of linolenic acid (C18:3).
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 22, 2011
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan