Patents Represented by Attorney R. A. Stoltz
  • Patent number: 4934569
    Abstract: A pressurized fluid is injected into a mass of material through at least one length of hose or other tubing of inherently resilient, elastomer material having one end closed and provided with at least one series of potential openings cut into the elastomer material along the length of the tubing so as to be normally tightly closed by reason of the resilency of the elastomer material but stretched open under the influneces of the pressurized fluid, which is introduced through the opposite end of the length of tubing. Gravity discharge of particulate material from a vessel having a hopper portion at its bottom can be effectively activated in this manner by the fluid-injection device of the invention.
    Type: Grant
    Filed: December 19, 1988
    Date of Patent: June 19, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Joseph F. Womack, Jr., Rodney L. Griffin
  • Patent number: 4934610
    Abstract: A reactive metal such as zirconium, hafnium, and titanium is subjected to comminution in a closed chamber containing a non-reactive gas modified by the addition of preferably somewhat less than one volume percent of water vapor.
    Type: Grant
    Filed: October 16, 1989
    Date of Patent: June 19, 1990
    Assignee: Westinghouse Electric Corp.
    Inventor: Steven C. Evans
  • Patent number: 4933154
    Abstract: A ZrO.sub.2 powder of very fine particle size adapted especially for the making of high density ceramics is produced by chlorinating a zirconium source material, such as zircon sand, to produce crude ZrCl.sub.4 solids; the solids are dissolved to form a ZrOCl.sub.2 solution from which ZrOCl.sub.2 crystals are precipitated; the crystals are dried and milled to a desired particle size; and the crystal particles are subjected to direct oxidation under controlled conditions to produce a very fine ZrO.sub.2 powder especially adapted to the making of high density ceramics.
    Type: Grant
    Filed: January 30, 1987
    Date of Patent: June 12, 1990
    Assignee: Westinghouse Electric Corp.
    Inventor: Young J. Kwon
  • Patent number: 4927468
    Abstract: This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).
    Type: Grant
    Filed: November 30, 1988
    Date of Patent: May 22, 1990
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Gerald D. Johnson, Ralph J. Lobsinger, Margaret L. Hamilton, David S. Gelles
  • Patent number: 4923577
    Abstract: This is a method of reducing zirconium chloride to a metal product by introducing zirconium chloride into a molten salt bath containing at least one alkali metal chloride and at least one alkaline earth metal chloride; and electrochemically reducing alkaline earth metal chloride to a metallic alkaline earth metal in the molten salt bath, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal. By using this electrochemical-metallothermic reduction, zirconium metal is produced and insoluble subchlorides of zirconium in the metal product are generally avoided.Preferably, the molten salt in the molten salt bath consists essentially of a mixture of lithium chloride, potassium chloride, magnesium chloride and zirconium or hafnium chloride.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: May 8, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: David F. McLaughlin, Francis Talko
  • Patent number: 4923579
    Abstract: A major cost component for zirconium alloy manufacture and fabrication is metal scrap generation during fabrication. This scrap, which has already incurred the entire process conversion cost from zircon sand to metal refining, constitutes an expensive cost to the fabrication process. The present invention teaches that these alloy scraps may be separated into their components by molten salt electrolysis using FLINAK electrolyte. The alloy components are recycled directly to the alloying process as cathodic grade metals, saving the cost of completely repeating the zircon conversion process.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: May 8, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stoltz, David Zuckerbrod
  • Patent number: 4916108
    Abstract: A process for producing supported metal catalysts having increased catalytic activity is provided. This process includes the steps of forming a high surface area porous support of a suitable porous material such as alumina or zirconia, dissolving a salt of a selected catalytic metal in an appropriate supercritical fluid solvent, contacting the porous support with the supercritical fluid solution of the catalytic metal salt to impregnate the porous support with the solution so that the catalytic metal salt may be adsorbed on the surfaces of the support, and removing the supercritical fluid solvent by reducing the pressure or increasing the temperature to change the supercritical fluid from the supercritical fluid phase to the gas phase, which may then be recycled for further use. The insoluble catalytic metal salt is deposited in the form of a film on the surfaces of the support.
    Type: Grant
    Filed: August 25, 1988
    Date of Patent: April 10, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: David F. McLaughlin, Michael C. Skriba
  • Patent number: 4913778
    Abstract: Removal of aluminum and iron impurities is accomplished using an absorbing column containing potassium or sodium chloride, producing an aluminum and iron chloride-rich bottoms product and purified Zr(Hf)Cl.sub.4 vapor at the top of the column. This invention is a continuous process for removing impurities of iron or aluminum chloride or both from vaporous zirconium chloride (or hafnium chloride or a mixture thereof). When iron is being removed from zirconium tetrachloride using potassium chloride, the process comprises: introducing impure zirconium chloride vapor into a middle portion of an absorbing column containing a potassium chloride-containing molten salt phase, the molten salt phase absorbing the iron chloride impurity to produce a zirconium chloride vapor stripped of iron chloride in the top portion of the column; introducing potassium chloride into a top portion of the column; controlling the top portion of the column to between 300.degree.-375.degree. C.
    Type: Grant
    Filed: January 2, 1989
    Date of Patent: April 3, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Ernest D. Lee, David F. McLaughlin
  • Patent number: 4913884
    Abstract: This is an improvement to a process for making zirconium metal from uranium-containing zircon ore. The process being improved is of the type which utilizes a fluidized bed carbochlorination process of the zircon ore in which uranium chloride is volatilized at the ore chlorinator temperature and follows as an impurity in the zirconium-hafnium tetrachloride stream, and in which removal of iron impurities is performed by liquid-liquid iron extraction with methyl isobutyl ketone, and the zirconium-hafnium stream is further processed by a separations step to reduce the hafnium content to low levels by liquid-liquid hafnium extraction. The improvement comprises adding 1-9 weight percent quaternary ammonium halide (e.g. tricaprylmethylammonium chloride) to the methyl isobutyl ketone in the liquid-liquid iron extraction.
    Type: Grant
    Filed: November 9, 1988
    Date of Patent: April 3, 1990
    Assignee: Westinghouse Electric Corp.
    Inventor: Robert J. Feuling
  • Patent number: 4904980
    Abstract: This is a structure of, and method for preparation of, molybdenum resistors in a superconductor integrated circuit. It utilizes a pattern superconductor film; applying an aluminum film on the patterned superconductor film; and then applying a molybdenum film on the aluminum film to provide an aluminum-molybdenum, etch-stop interface; applying a patterned resist film on the molybdenum film; etching the exposed molybdenum film to expose a portion of the aluminum-molybdenum, etch-stop interface; and oxidizing the exposed aluminum-molybdenum, etch-stop interface. The aluminum-molybdenum etch stop interface protects the patterned superconductor film and the support (including any other underlayers) and increases processing margins for the etch time.
    Type: Grant
    Filed: August 19, 1988
    Date of Patent: February 27, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: John X. Przybysz, Joseph Buttyan
  • Patent number: 4904341
    Abstract: This is an improved method for providing silicon dioxide with openings which expose contact pad areas for connections to superconductor in the preparation of superconducting integrated circuits. It relates to the type of method which utilizes depositing of a silicon dioxide film on a substrate (including over superconductor conductor patterns on the substrate surface), placing a resist film on the silicon dioxide film, patterning the resist film to expose portions of the silicon dioxide, and reactive ion etching the exposed portions of the silicon dioxide film to expose contact pad areas of superconductor. The improvement utilizes an etchant gas consisting essentially of 50-95 volume percent nitrogen trifluoride and 5-50 volume percent rare gas (preferably about 77 volume percent nitrogen trifluoride, with argon or neon or mixtures thereof as the rare gas) for the reactive ion etching of the exposed portions of the silicon dioxide film.
    Type: Grant
    Filed: August 22, 1988
    Date of Patent: February 27, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Richard D. Blaugher, Joseph Buttyan, John X. Przybysz
  • Patent number: 4900536
    Abstract: This is a process for making precursors for ceramic superconductor. It utilizes fluidized bed chlorination of a rare earth ore (e.g. xenotime or monazite) a separation of yttrium chloride by differential condensation at 725.degree.-1200.degree. C. and reaction with an alkali metal alkoxide to produce yttrium alkoxide for mixing with alkoxide of other non-oxygen constituents of the superconductor for producing an alkoxide composite for processing into the superconductor.
    Type: Grant
    Filed: November 16, 1987
    Date of Patent: February 13, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stoltz
  • Patent number: 4874475
    Abstract: Improvements are described to a process in which the extractive distillation separation of zirconium or hafnium may be accomplished using mixtures of fused alkali metal or alkali metal and alkaline earth chlorides as the solvent. The solvent composition is adjusted to provide a low-melting eutectic, permitting recirculation of the stripped solvent in the liquid phase, as well as reducing the temperature required for thermal stripping (reducing the corrosivity of the fluid). Stripping of the bottoms is accomplished at least partially by direct electrolysis of the bottoms stream, producing the zirconium-free salt recycle stream to be transferred to the top of the column, and at least partially eliminating the need for chemical reduction of the tetrachlorides to metal (a costly process generating undersirable waste streams). Regeneration of the reflux is accomplished in a presurized condenser system, of one or more stages, with all material transport to be done in either the liquid or vapor states.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: October 17, 1989
    Assignee: Westinghouse Electric Corp.
    Inventors: David F. McLaughlin, Richard A. Stoltz
  • Patent number: 4873072
    Abstract: In the production of a highly pure hafnium oxide by calcination of a highly pure hafnium hydroxide, the production of a highly pure hafnium hydroxide from a hafnium-loaded, methyl isobutyl ketone solvent that is substantially free of zirconium and sulfate ions by adding ammonia to such solvent to produce a three-layered reaction product having MIBK solvent on top, ammonium thiocyanate solution in the middle, and a highly pure hafnium hydroxcide sludge at the bottom which is separately removed, freed of water, and calcined.
    Type: Grant
    Filed: September 2, 1988
    Date of Patent: October 10, 1989
    Assignee: Westinghouse Electric Corp.
    Inventor: Hani A. Abodishish
  • Patent number: 4870824
    Abstract: A catalytic combustor unit for a stationary combustion turbine includes a substrate composed of a plurality of intersecting walls defining a series of generally parallel passages aligned in rows and columns, open at their opposite ends and exposed to a heated flow of fuel and air mixture therethrough. The walls have sections which border and define the respective passages. Each wall section is in common with two adjacent passages and has a pair of oppositely-facing surface regions, one of which is exposed to one of the two adjacent passages and the other exposed to the other of the two adjacent passages. A catalyst coating is applied on selected ones of the wall surface regions exposed to certain ones of the passages, whereas selected others of the wall surfaces exposed to certain others of the passages are free of the catalyst coating.
    Type: Grant
    Filed: August 24, 1987
    Date of Patent: October 3, 1989
    Assignee: Westinghouse Electric Corp.
    Inventors: William E. Young, Dan E. Carl
  • Patent number: 4865696
    Abstract: This is a process for removing phosphorus oxychloride from a complex of zirconium or hafnium chloride and phosphorus oxychloride utilizing a lithium-potassium chloride molten salt absorber vessel displacing phosphorous oxychloride from the complex, with a condenser which has the complex of zirconium or hafnium chloride and phosphorus oxychloride as the condensing fluid to scrub zirconium or hafnium chloride from the phosphorus oxychloride vapor released from the complex. The process uses at least one separate vessel to strip the zirconium or hafnium chloride from the lithium-potassium chloride molten salt.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: September 12, 1989
    Assignee: Westinghouse Electric Corp.
    Inventors: David F. McLaughlin, Richard A. Stoltz
  • Patent number: 4865694
    Abstract: This is an improved method for separating hafnium from zirconium of the type where a complex of zirconium and hafnium chlorides and phosphorus oxychloride is prepared from zirconium-hafnium chloride and the complex is introduced into a distillation column, with the improvement comprising: electrochemical breaking of the zirconium of hafnium chloride complex taken from said distillation column to separate product from the complex. The electrochemical breaking of the complex, possibly by reducing zirconium or hafnium, is done in a molten salt bath. Preferably, the molten salt in said molten salt bath consists principally of a mixture of alkali metal and alkaline earth metal chlorides and zirconium or hafnium chloride. The product can be either chloride, metal, or mixed metal and subchloride for further processing.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: September 12, 1989
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stoltz, David F. McLaughlin
  • Patent number: 4865695
    Abstract: This is a method for molten salt systems related to distillation for zirconium-hafnium separation and prevents buildup of iron chloride by electrochemically reducing iron from the molten salt to give very low levels of iron chloride in the distillation column, to reduce corrosion, improve the product and, in some cases, to allow the molten salt system to be run continuously. The improvement comprises electrochemical purification of molten salt containing zirconium-hafnium chloride either, prior to introduction of the zirconium-hafnium chloride into a distillation column, or after introduction, or both, to substantially eliminate iron chloride from the zirconium-hafnium chloride. The molten salt during the electrochemical purification consists essentially of a mixture of chlorides of alkali metals, alkaline earth metals, zirconium, hafnium, aluminum, manganese, and/or zinc.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: September 12, 1989
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stoltz
  • Patent number: 4865693
    Abstract: This is a zirconium-hafnium separation process utilizing a complex of zirconium-hafnium chlorides and phosphorus oxychloride. The complex is introduced into a distillation column and a hafnium chloride enriched stream is taken from the top of the column and a zirconium chloride enriched stream is taken from the bottom of the column. In particular, the invention utilizes prepurification of the zirconium-hafnium chlorides prior to introduction of the complex into the distillation column to substantially eliminate iron chloride; thus, the buildup of iron chloride in the distillation column is substantially eliminated and the column can be operated in a continuous stable, and efficient manner.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: September 12, 1989
    Assignee: Westinghouse Electric Corp.
    Inventor: David F. McLaughlin
  • Patent number: 4859879
    Abstract: This is a superconducting digital logic amplifier for interfacing superconductor circuits with semiconductor circuits. It provides a gigahertz amplifier to convert low voltage superconducting logic signals to higher voltage signals, suitable for semiconductor signal processing circuits. It may, for example, provide a factor of ten voltage gain to raise the 2.5 mV Josephson logic signals of conventional metallic superconductor circuitry to 25 mV signals for input into inexpensive semiconductor amplifiers which, in turn, can power semiconductor logic circuitry. Generally, it utilizes a first series string of Josephson junctions in series with an input Josephson junction to provide a series combination which is then connected in parallel with a second string of higher critical current Josephson junctions. The input signal is introduced between the first series string and the input Josephson junction, and the output terminal is connected at the common connection opposite the input Josephson junction.
    Type: Grant
    Filed: May 16, 1988
    Date of Patent: August 22, 1989
    Assignee: Westinghouse Electric Corp.
    Inventor: John X. Przybysz