Patents Represented by Attorney, Agent or Law Firm Reed A. Duthler
  • Patent number: 8348927
    Abstract: A syringe adapter tool facilitates inline connection of a syringe with a catheter lumen, as well as torque transfer between the syringe and catheter. The adapter tool may further facilitate passage of an instrument through a seal zone portion of the catheter lumen, which seal zone portion is located in a proximal section of the catheter.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: January 8, 2013
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Stanten C. Spear, Lester O. Stener, Gary R. Fiedler, Scott W. Hayden, Kendra Yasger
  • Patent number: 8348884
    Abstract: A sympatholytic cardiovascular agent delivered by a drug delivery pump to a central nervous system site to alleviate symptoms of acute or chronic cardiac insult or impaired cardiac performance. The drug delivery pump can be external or implantable infusion pump (IIP) coupled with a drug infusion catheter extending to the site. A patient activator can command delivery of a dosage and/or an implantable heart monitor (IHM) coupled with a sensor can detect physiologic parameters associated with cardiac insult or impaired cardiac performance and trigger dosage delivery. The IIP and IHM can be combined into a single implantable medical device (IMD) or can constitute separate IMDs that communicate by any of known communication mechanisms. The sympatholytic cardiovascular agent is one of the group consisting of an alpha-adrenergic agonist and an alpha2-adrenergic agonist (e.g.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: January 8, 2013
    Assignee: Medtronic, Inc.
    Inventors: Keith R. Hildebrand, Michael R. Ujhelyi, Xiaohong Zhou, Daniel C. Sigg, Linda M. Page
  • Patent number: 8352028
    Abstract: An implantable medical device system, including an implantable medical device and an associated implant tool. The device has a hermetic housing containing a power source and electronic circuitry. One or more tines are mounted to the housing movable from a first position extending away from the housing to a second position adjacent the housing. The device is provided with a rotational fixation mechanism. The Implant tool includes an elongated sheath sized to receive the device and provided with internal grooves sized to engage with the tines when the tines are located in their second position. The implant tool may further include a push tool located with the sheath and movable within the sheath to advance the device distally out of the sheath. The sheath may be provided with a closed distal end openable by passage of the device therethrough.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: January 8, 2013
    Assignee: Medtronic, Inc.
    Inventor: William K Wenger
  • Patent number: 8348926
    Abstract: A proximal terminal end of a proximal section of a catheter, preferably tapered, defines a perimeter of an opening into a lumen of the catheter and includes an exposed sealing area. A sealing assembly, that may be removed from the catheter, includes a relatively soft part and a relatively rigid part, wherein the exposed sealing area is formed by the soft part, and the relatively rigid part may include an attachment feature for removable connection of the assembly to the catheter. The lumen of the catheter, within the proximal section, may include a seal zone portion, which preferably includes a slit segment intersecting a funnel-like segment of a bore. The catheter proximal section may further include a feature for interlocking engagement with an accessory tool.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: January 8, 2013
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Stanten C. Spear, Lester O. Stener, Gary R. Fiedler, Scott W. Hayden, Kendra Yasger
  • Patent number: 8340783
    Abstract: An implantable lead including a lead body including an outer surface, a proximal end, a distal end, and at least one electrode; an electrically insulating member that extends axially over a first portion of the outer surface of the lead body between the proximal end and distal end, the electrically insulating member defining at least one aperture that exposes a first portion of the at least one electrode when in a first position over the lead body; and a reinforcement member formed at least partially of a different material than the insulating member and coupled to the insulating member, the reinforcement member extending axially over the outer surface of the lead body between the insulating member and proximal end.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: December 25, 2012
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, Kenneth C. Gardeski, Xiaonan Shen, Jon D. Schell
  • Patent number: 8340762
    Abstract: The invention is directed to tri-phasic pulse generation techniques that make use of a pre-stimulus phase, a stimulus phase, and a post-stimulus phase in a pulse generation cycle. During the pre-stimulus phase, an output capacitor is charged to a desired voltage level. During the stimulus phase, the capacitor is discharged, and during the post-stimulus phase recharging of the capacitor begins again. In accordance with the invention, charging of the output capacitor can be terminated during the post-stimulus phase after a measured voltage in the patient is greater than or equal to a threshold.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: December 25, 2012
    Assignee: Medtronic, Inc.
    Inventors: Ben F. M. Vonk, Willem J. A. Esmeijer, Harry B. A. Kerver
  • Patent number: 8332030
    Abstract: A device for delivering pacing therapy includes an atrial and ventricular leads, sensing circuitry connected to the leads for detecting depolarizations, and pulse generation circuitry for delivering ventricular pacing pulses based on sensed atrial depolarizations. The device includes control circuitry for controlling the pulse generation circuitry in a first mode in which the pulse generation circuitry delivers atrial synchronized pulses to both the right and left ventricular leads in response to each atrial depolarization sensed. In response to a detected atrial arrhythmia, the control circuitry causes the pulse generation circuitry to deliver atrial synchronized ventricular pacing pulses in response only to selected atrial depolarizations.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: December 11, 2012
    Assignee: Medtronic, Inc.
    Inventors: Michael F. Hess, Eduardo N. Warman
  • Patent number: 8332042
    Abstract: An implantable lead for a medical device includes a lead body having a proximal end and a distal end, an electrical connector coupled to the proximal end of the lead body, an electrode coupled to the distal end of the lead body, and electrically conductive conductor coil extending between the proximal and the distal end of the lead body, the conductor coil wound in a first winding direction under tension. The lead body also includes a plastic ribbon wound around the conductor coil in a second winding direction opposite to the first winding direction without releasing the tension of the conductor coil.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: December 11, 2012
    Assignee: Medtronic, Inc.
    Inventor: Terrell M. Williams
  • Patent number: 8332031
    Abstract: An implantable medical device provides ventricular pacing capabilities and optimizes AV intervals for multiple purposes. In general, intrinsic conduction is promoted by determining when electromechanical systole (EMS) ends and setting an AV interval accordingly. EMS is determined utilizing various data including QT interval, sensor input, and algorithmic calculations.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: December 11, 2012
    Assignee: Medtronic, Inc.
    Inventors: Raul Chirife, William J Combs, Russell L. Lundstrom
  • Patent number: 8332051
    Abstract: Electrical medical leads having active fixation electrodes, particularly helix electrodes intended to be screwed into body tissue, e.g., the heart, are disclosed having selectively applied insulation to optimize exposed electrode surface area and dispose the exposed electrode surface area toward tissue that is less traumatized by injury caused by screwing in the fixation helix. In a preferred fabrication method, an outer helical surface is masked by contact with a masking tube while a dielectric coating is applied to the inner helical surface of the coil turns of the helix, and the masking tube is removed when the dielectric coating has set. In one variation, at least one aperture is formed through the masking tube sidewall exposing an area of the outer helical surface thereby interrupting the uninsulated outer helical electrode.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: December 11, 2012
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, Daniel C. Sigg, James A. Coles, Jr.
  • Patent number: 8326418
    Abstract: A medical system comprises a plurality of electrodes; at least one sensor configured to output at least one signal based on at least one physiological parameter of a patient; and a processor. The processor is configured to control delivery of stimulation to the patient using a plurality of electrode configurations. Each of the electrode configurations comprises at least one of the plurality of electrodes. For each of the electrode configurations, the processor is configured to determine a first response of target tissue to the stimulation based on the signals, and a second response of non-target tissue to the stimulation based on the signals. The processor is also configured to select at least one of the electrode configurations for delivery of stimulation to the patient based on the first and second responses for the electrode configurations. As examples, the target tissue may be a left ventricle or vagus nerve.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: December 4, 2012
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, David Wayne Bourn, Mark T. Marshall, Michael D. Eggen, Gabriela C. Miyazawa
  • Patent number: 8315709
    Abstract: Waveforms are digitally sampled and compressed for storage in memory. The compression of the data includes generating a truncated entropy encoding map and using the values within the map to obtain good compression. An encoder further sub-selects values to be encoded and values to remain unencoded to provide an overall compression of the data.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: November 20, 2012
    Assignee: Medtronic, Inc.
    Inventor: Eric D. Corndorf
  • Patent number: 8298209
    Abstract: A seal member for assembly within, or a seal zone portion of, a lumen of a medical instrument/device includes a slit segment and a bore, wherein the slit segment intersects with a funnel-like segment of the bore.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: October 30, 2012
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Stanten C. Spear, Lester O. Stener, Gary R. Fiedler, Scott W. Hayden, Kendra Yasger
  • Patent number: 8295943
    Abstract: This disclosure describes implantable medical leads that include a lead body and an electrode. A width of the electrode as measured along a longitudinal direction of the lead varies about the perimeter of the lead. The uneven width of the electrode may bias a stimulation field in a particular direction, e.g., a radial or transverse direction relative to the longitudinal axis of the lead. Electrodes with an uneven width may be useful for controlling the direction of propagation of the stimulation field in order to, for example, avoid phrenic nerve stimulation during LV pacing or neck muscle stimulation during vagal neurostimulation.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: October 23, 2012
    Assignee: Medtronic, Inc.
    Inventors: Michael D. Eggen, John L. Sommer, Michael Ebert, David Wayne Bourn, Gabriela C. Miyazawa
  • Patent number: 8285395
    Abstract: The present invention is configured to provide an offset weld and crimp in a coupling component that can be located entirely within a lumen of a lead body. This end is accomplished by providing an asymmetric coupling component is provided with a crimp recess, for example a groove or a bore extending along one side of the component and a thickened portion offset laterally from the groove or bore and having a welding surface displaced laterally from the groove or bore. While the embodiments illustrated herein are those employing a crimping groove, for purposes of understanding the invention it should be understood that a bore may be substituted. In preferred embodiments, the crimp recess is used to receive a stranded or cabled conductor within the lead body and the offset portion is used to attach to one or more filars of an electrode coil by welding thereto.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: October 9, 2012
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Gregory A. Boser
  • Patent number: 8260412
    Abstract: Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: September 4, 2012
    Assignee: Medtronic, Inc.
    Inventors: Paul G. Krause, John E. Burnes, William T. Donofrio, David J. Peichel, Gerald P. Arne, Xiaohong Zhou, James D. Reinke, Timothy Davis
  • Patent number: 8260418
    Abstract: Upon delivery of a pacing pulse to a heart by an electrode of an implantable medical device (IMD), a deleterious pace polarization artifact is generally created at the electrode-tissue interface and subsequently stored by the electrode. Such polarization artifact is generally minimized through the use of passive recharge circuitry. Such passive recharge circuitry functions in creating a recharge pulse at the electrode which in essence, minimizes the polarization artifact on the electrode. In order to produce further artifact minimization from a subsequent pacing pulse, following termination of the recharge pulse, any remaining polarization artifact is sampled and analyzed by the IMD and IMD software optionally compensates the next recharge pulse to further minimize the polarization artifact generated by a next pacing pulse. This sampling and optional compensation is repeated for subsequent pacing pulses so that polarization artifacts are effectively analyzed and if necessary, minimized.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: September 4, 2012
    Assignee: Medtronic, Inc.
    Inventor: Volkert A. Zeijlemaker
  • Patent number: 8250754
    Abstract: A medical electrical lead that includes a lead body and at least one tubular electrode sub-assembly positioned over and attached to the external surface of the lead body. The lead body includes at least one elongated conductive element, such as a cable, that is electrically connected to a coiled electrode of the tubular electrode sub-assembly. The tubular electrode sub-assembly includes a tubular liner and an electrode embedded in the outer surface of the liner. In some embodiments, only a portion of the inner surface of the tubular liner is attached to the lead body which may potentially improve flexibility of the medical electrode lead in the area occupied by the tubular electrode sub-assembly.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: August 28, 2012
    Assignee: Medtronic, Inc.
    Inventor: Kevin R. Seifert
  • Patent number: 8249709
    Abstract: Assessing symptomatic and asymptomatic physiologic changes due to chronic heart failure involves apparatus and methods for gauging degradation and possible improvement using automated measurement of inter-ventricular conduction time, both alone and in combination with other automated physiologic tests. Conduction times increase due to the greater distance a wavefront must traverse as a heart enlarges. Analysis of conduction time can be used to verify the occurrence of cardiac remodeling due to heart failure as well as beneficial reverse remodeling due to successful heart failure therapy delivery. Patient activity level(s) and presence/increase in pulmonary fluids can also be used to automatically determine changes in heart failure status and/or predict hospitalization. Conduction time is monitored between electrodes positioned in the left and right ventricles of the heart via endocardial or epicardial electrodes.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 21, 2012
    Assignee: Medtronic, Inc.
    Inventors: Lynn A. Davenport, Purvee P. Parikh, Todd J. Sheldon
  • Patent number: 8244355
    Abstract: A system and method are provided for determining an index of autonomic nervous system (ANS) or sympathetic nervous system (SNS) activity for use in patient monitoring or therapy delivery control. An ANS or SNS index is calculated as a function of multiple monitored physiological variables that strongly correlate to changes in autonomic or sympathetic tone. These ANS-influenced variables are derived from selected hemodynamic and/or electrical signals and may include variables relating to any of: the maximum rate of pressure rise (dP/dtmax), the maximum rate of pressure decline (dP/dtmin), pulse pressure (PP), pre-ejection time interval (PEI) and/or systolic time interval (STI), heart rate (HR), heart rate variability (HRV), and baro-reflex gain. Changes in the ANS or SNS index may be used to automatically adjust a device delivered therapy.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: August 14, 2012
    Assignee: Medtronic, Inc.
    Inventors: Tommy D. Bennett, Edwin G. Duffin, Barbro Kjellstrom