Patents Represented by Attorney Richard A. DeCristofaro
  • Patent number: 7826943
    Abstract: A method for diagnosing faults in a particular device within a fleet of devices is provided. The method comprises receiving performance data related to one or more parameters associated with a fleet of devices and processing the performance data to detect one or more trend shifts in the one or more parameters. The method then comprises detrending the one or more parameters to derive noise-adjusted performance data related to a particular parameter associated with a particular device. The method further comprises generating a fleet-based diagnostic model based on trend patterns and data characteristics associated with the fleet of devices. The fleet-based diagnostic model comprises one or more fuzzy rules defining one or more expected trend shift data ranges for the one or more parameters associated with the fleet of devices.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: November 2, 2010
    Assignee: General Electric Company
    Inventors: Lijie Yu, Daniel Joseph Cleary, Mark David Osborne
  • Patent number: 7816622
    Abstract: A laser shock peening system including a workpiece is provided. The laser shock peening system includes a workholding fixture configured to hold the workpiece. The laser shock peening system also includes a laser source configured to emit multiple laser beam pulses on the workpiece. The laser shock peening system further includes an absorptive layer disposed on the workpiece, the absorptive layer configured to absorb the laser beam pulses from the laser source into the workpiece. The laser shock peening system also includes a transparent constraining layer disposed between the laser source and the absorptive layer. The transparent constraining layer is also configured to provide a pressure medium configured to direct multiple reflected laser generated shock waves from the workpiece back into the workpiece. The laser shock peening system also includes a transducer disposed on the workholding fixture and configured to detect multiple acoustic signals emitted from the workpiece.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 19, 2010
    Assignee: General Electric Company
    Inventors: John Broddus Deaton, Jr., Magdi Naim Azer, Donald Eugene Williams, Jr., Mark Samuel Bailey, Matthew Alan Foister, Michael Paul Hausfeld, John Jefferson West
  • Patent number: 7802274
    Abstract: An optical data storage article is configured to transform from a pre-activated state of functionality to an activated state of functionality. The optical data storage article includes a physical surface modification configured to alter an optical integrity of the optical data storage article upon interaction with an external stimulus.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: September 21, 2010
    Assignee: General Electric Company
    Inventors: Marc Brian Wisnudel, Ben Purushotam Patel, Kasiraman Krishnan, Lifeng Zhang, Matthew Jeremiah Misner
  • Patent number: 7784287
    Abstract: An aircraft engine is provided with at least one pulse detonation device, and the operational frequency of the pulse detonation device is varied over an operational range of frequencies around a mean frequency value. The pulse detonation device can be positioned upstream, downstream or adjacent to a turbine section of the engine. An additional embodiment of the present invention is an aircraft engine provided with more than one pulse detonation device, and the operational frequency of one, or more, of the pulse detonation devices is varied over an operational range of frequencies around a mean frequency value.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: August 31, 2010
    Assignee: General Electric Company
    Inventors: Bruce John Badding, Adam Rasheed, Anthony John Dean
  • Patent number: 7760614
    Abstract: An optical article comprising at least one data side and configured for transformation from a pre-activated state of functionality to an activated state of functionality is provided. The optical article includes an optical data layer for storing data. Furthermore, the optical article includes an electrically responsive layer having a first surface and a second surface, wherein the electrically responsive layer is characterized by an optical absorbance in the range of about 200 nm to about 800 nm. The electrically responsive layer being configured to transform from a first optical state to a second optical state upon exposure to an external stimulus, and being capable of irreversibly transforming the optical article from the pre-activated state of functionality to the activated state of functionality. The electrically responsive layer includes a binder polymeric material, an electrically responsive material, and an electrolyte.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: July 20, 2010
    Assignee: General Electric Company
    Inventors: Andrea Jeannine Peters, Marc Brian Wisnudel, Ben Purushotam Patel, Matthew Jeremiah Misner, Kasiraman Krishnan, Kaustubh Ravindra Nagarkar
  • Patent number: 7760123
    Abstract: A data acquisition system including a readout Application Specific Integrated Circuit (ASIC) having a plurality of channels, each channel having a time discriminating circuit and an energy discriminating circuit, wherein the ASIC is configured to receive a plurality of signals from a semiconductor radiation detector. The data acquisition system also includes a digital-to-analog converter (DAC) electrically coupled to the ASIC and configured to provide a reference signal to the ASIC used in the generation of digital outputs from the ASIC, and a controller electrically coupled to the ASIC and to the DAC, the controller configured to instruct the DAC to provide the reference signal to the ASIC.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: July 20, 2010
    Assignee: General Electric Company
    Inventors: Naresh Kesavan Rao, Brian David Yanoff, Yanfeng Du, Jianjun Guo
  • Patent number: 7723932
    Abstract: A propulsion system for a vehicle is provided. The propulsion system includes a first traction drive system and a second traction drive system. The first traction drive system includes a heat engine and a first drive motor. The heat engine supplies energy to the first drive motor to propel the vehicle. The second traction drive system includes a second drive motor and a first energy storage device. The second drive motor both supplies energy to the first energy storage device and receives energy from the first energy storage device. Also provided is a propulsion system for a vehicle that includes the first traction drive system and a propulsion means for supplying energy to a first energy storage device and for receiving energy from the first energy storage device.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: May 25, 2010
    Assignee: General Electric Company
    Inventors: Robert Dean King, Ajith Kuttannair Kumar, Lembit Salasoo
  • Patent number: 7653919
    Abstract: An optical article that can transform from a pre-activated state of functionality to an activated state of functionality is provided. The optical article includes a radio frequency circuitry coupled to the optical article for interacting with a signal, wherein the signal comprises a thermal signal, an electrical signal, or both, and a convertible material in operative association with the radio frequency circuitry for altering the functionality of the optical article from the pre-activated state to the activated state upon interaction with the thermal energy.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: January 26, 2010
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Marc Brian Wisnudel, Jerry Apffel Pierce, Kenneth Brakeley Welles, II, Kyle Erik Litz
  • Patent number: 7632604
    Abstract: An article of electrochemical energy conversion is provided that includes a separator. The separator has a first surface that defines at least a portion of a first chamber, and a second surface that defines a second chamber, and the first chamber is in ionic communication with the second chamber through the separator. The energy storage device further includes a plurality of cathodic materials. The plurality includes at least a first cathodic material and a second cathodic material. Both of the cathodic materials are in electrical communication with the separator and both are capable of forming a metal halide. A proviso is that if either of the first cathodic material or the second cathodic material is a transition metal, then the other cathodic material is not iron, arsenic, or tin.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: December 15, 2009
    Assignee: General Electric Company
    Inventors: Charles Dominic Iacovangelo, David Charles Bogdan, Jr., Steven Alfred Tysoe, Michael Alan Vallance, Guillermo Daniel Zappi, Karthick Vilapakkam Gourishankar, Hari Nadathur Seshadri, Guruprasad Sundararajan
  • Patent number: 7626170
    Abstract: Infrared radiation detection systems and methods of making the same are provided. In one embodiment, the radiation detection system comprises: a housing having an open end exposed to a radiation emitting object; a detector positioned in the housing, the detector comprising a radiation sensing material for detecting infrared radiation, the radiation sensing material having a portion removed by etching or coated by a mask such that only a region of the radiation sensing material is capable of detecting the infrared radiation; and a lens positioned in the housing for transmitting infrared radiation from the object to the detector.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: December 1, 2009
    Assignee: General Electric Company
    Inventors: Kevin George Harding, Mark Joseph Bartonek, Brandi Elizabeth Wood, Pingfan Peter Wu
  • Patent number: 7572392
    Abstract: Solid-state scintillating compositions for detecting neutrons comprise a Li4Zn(PO4)2 host lattice. Methods of making scintillating compositions comprise: dissolving a lithium-6 precursor and a zinc precursor in a solvent to form a solution; combining phosphoric acid with the solution; combining a base with the solution to form a precipitate; and heating the precipitate to form a Li4Zn(PO4)2 host lattice.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: August 11, 2009
    Assignee: General Electric Company
    Inventors: Brent Allen Clothier, Sergio Paulo Martins Loureiro, Venkat Subramaniam Venkataramani, Alok Mani Srivastava
  • Patent number: 7563692
    Abstract: According to some embodiments, a conducting layer is formed on a first wafer. An insulating layer is formed on a second wafer. The insulating layer includes a cavity and a conducting area may be formed in the second wafer proximate to the cavity. The side of the conducting layer opposite the first wafer is bonded to the side of the insulating layer opposite the second wafer. At least some of the first wafer is then removed, without removing at least some of the conducting layer, to form a conducting diaphragm that is substantially parallel to the second wafer. In this way, an amount of capacitance between the diaphragm and the conducting area may be measured to determine an amount of pressure being applied to the diaphragm.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: July 21, 2009
    Assignee: General Electric Company
    Inventors: Jeffrey Bernard Fortin, Guanghua (George) Wu, Kanakasabapathi Subramanian
  • Patent number: 7560788
    Abstract: According to some embodiments, a conducting layer is formed on a first wafer. An insulating layer is formed on a second wafer. The insulating layer includes a cavity and a conducting area may be formed in the second wafer proximate to the cavity. The side of the conducting layer opposite the first wafer is bonded to the side of the insulating layer opposite the second wafer. At least some of the first wafer is then removed, without removing at least some of the conducting layer, to form a conducting diaphragm that is substantially parallel to the second wafer. In this way, an amount of capacitance between the diaphragm and the conducting area may be measured to determine an amount of pressure being applied to the diaphragm.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: July 14, 2009
    Assignee: General Electric Company
    Inventors: Jeffrey Fortin, Guanghua (George) Wu, Kanakasabapathi Subramanian
  • Patent number: 7521732
    Abstract: A vertical heterostructure field effect transistor including a first layer having a first material, and the first material having a hexagonal crystal lattice structure defining a first bandgap and one or more non-polar planes is provided. The transistor further includes a second layer that is adjacent to the first layer having a second material. Further, the second layer has a first surface and a second surface, and a portion of the second layer first surface is coupled to the surface of the first layer to form a two dimensional charge gas and to define a first region. The second material may have a second bandgap that is different than the first bandgap.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: April 21, 2009
    Assignee: General Electric Company
    Inventors: Kevin Sean Matocha, Vinayak Tilak
  • Patent number: 7518721
    Abstract: A lateral flow device is disclosed. The lateral flow device includes a substrate having a flow path and a detection zone disposed along the flow path. The detection zone includes an immobilized target-binding moiety directed against a target of a Raman-active complex. Also disclosed is a method of conducting a lateral flow assay and detection system. The method includes i) defining a flow path having a detection zone; ii) flowing a sample down the flow path; and iii) immobilizing a Raman-active complex if present, at the detection zone. The sample includes a Raman-active complex or a Raman-active tag.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: April 14, 2009
    Assignee: GE Homeland Protection, Inc.
    Inventors: Michael Craig Burrell, Frank J. Mondello, Yuan-Hsiang Lee, Patrick Ronald Engel, Andrew David Pris
  • Patent number: 7505128
    Abstract: An integrated spectrometer instrument, including an optical source formed on a chip, the optical source configured to generate an incident optical beam upon a sample to be measured. Collection optics formed on the chip are configured to receive a scattered optical beam from the sample, and filtering optics formed on the chip are configured to remove elastically scattered light from the scattered optical beam at a wavelength corresponding to the optical source. A tunable filter formed on the chip is configured to pass selected wavelengths of the scattered optical beam, and a photo detector device formed on the chip is configured to generate an output signal corresponding to the intensity of photons passed through the tunable filter.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: March 17, 2009
    Assignee: General Electric Company
    Inventors: Anis Zribi, Stacey Joy Kennerly, Glenn Scott Claydon, Long Que, Ayan Banerjee, Shankar Chandrasekaran, Shivappa Ningappa Goravar, David Cecil Hays
  • Patent number: 7499160
    Abstract: Methods for amplifying the Raman signal of primary SERS nanoparticles are provided. One method generally includes binding secondary SERS particles to the primary SERS nanoparticles after binding of the primary SERS nanoparticles. In another method, secondary SERS nanoparticles are brought in close proximity to the primary SERS nanoparticles, wherein the secondary nanoparticles are free of a reporter molecule or have a reporter molecule different from that of the primary SERS nanoparticles.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: March 3, 2009
    Assignee: GE Homeland Protection, Inc.
    Inventors: Michael Burrell, Frank John Mondello, Tracy Lynn Paxon
  • Patent number: 7494634
    Abstract: Systems and methods of removing at least nitrogen oxides from an exhaust fluid generally include dividing a flow of an exhaust fluid comprising a concentration of nitric oxide into three types of flow-through cells. The first flow-through cell comprises a catalyst configured to reduce the nitric oxide with a reductant to form a first feedstream comprising nitrogen containing species derived therefrom. The second flow-through cell comprises a catalyst configured to oxidize nitric oxide to form a second feedstream comprising nitrogen dioxide. The third flow-through cell does not change the nitric oxide concentration and form a third feedstream comprising nitric oxide. After flowing through the three different types of cells, the feedstreams are mixed to form a homogenous mixture and then fed to a catalyst bed configured to convert the nitrogen containing species, the nitric oxide, and the nitrogen dioxide to a fluid comprising nitrogen gas and water.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: February 24, 2009
    Assignee: General Electric Company
    Inventors: Frederic Vitse, Dan Hancu, Benjamin Hale Winkler
  • Patent number: 7487631
    Abstract: System and method for supplying reductants to an emission treatment system. The system includes a fuel tank adapted to supply a premixed fuel stream that includes a primary component and a reductant component, and an engine in fluid communication with the fuel tank, wherein the engine is configured to create an emission. The engine includes an emission treatment system to treat the emission. The system also includes a separation system that includes a membrane with differential permeability for the reductant component relative to the primary component. The separation system is configured to receive at least a portion of the premixed fuel stream from the tank and to separate the premixed fuel stream into a first fraction and a second fraction. The first fraction includes a higher concentration of the reductant component than the second fraction, and the separation system is configured to supply the first fraction to the emission treatment system.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: February 10, 2009
    Assignee: General Electric Company
    Inventors: Michael Kent Cueman, Teresa Grocela-Rocha, Roy James Primus
  • Patent number: 7489048
    Abstract: A battery load leveling system for an electrically powered system in which a battery is subject to intermittent high current loading, the system including a first battery, a second battery, and a load coupled to the batteries. The system includes a passive storage device, a unidirectional conducting apparatus coupled in series electrical circuit with the passive storage device and poled to conduct current from the passive storage device to the load, the series electrical circuit coupled in parallel with the battery such that the passive storage device provides current to the load when the battery terminal voltage is less than voltage on the passive storage device, and a battery switching circuit that connects the first and second batteries in either a lower voltage parallel arrangement or a higher voltage series arrangement.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: February 10, 2009
    Assignee: General Electric Company
    Inventors: Robert Dean King, Timothy Gerard Richter, Lembit Salasoo