Patents Represented by Attorney, Agent or Law Firm Richard E. Conser
  • Patent number: 5365008
    Abstract: An improved process is disclosed for the isomerization of butenes and/or pentenes using a catalyst comprising a silicoaluminophosphate molecular sieve containing noncondensed silica. It is of particular interest to increase the proportion of olefins containing tertiary carbons in the product with low formation of undesirable by-products. Product olefins may be further processed to obtain ethers, which enjoy high current interest as components for reformulated gasoline.
    Type: Grant
    Filed: September 3, 1993
    Date of Patent: November 15, 1994
    Assignee: UOP
    Inventors: Paul T. Barger, R. Lyle Patton, David A. Lesch, Lorenz J. Bauer, Gregory J. Gajda
  • Patent number: 5346611
    Abstract: Reforming and dehydrocyclization catalysts and processes are disclosed wherein reforming catalysts comprise a Group VIII metal and at least one bound medium pore non-zeolitic molecular sieve characterized in the calcined form by an adsorption of isobutane of at least 2 percent by weight at a partial pressure of 500 torr and a temperature of 20.degree. C. and characterized by an adsorption of triethylamine less than about 5 percent by weight at a partial pressure of 2.6 torr and a temperature of 22.degree. C. The binder preferably is alumina and/or silica, and the Group VIII metal preferably is platinum.
    Type: Grant
    Filed: July 2, 1993
    Date of Patent: September 13, 1994
    Assignee: UOP
    Inventors: Peter K. Coughlin, Regis J. Pellet
  • Patent number: 5336831
    Abstract: An improved process is disclosed for the isomerization of butenes and/or pentenes using a catalyst comprising a non-zeolitic molecular sieve. It is of particular interest to increase the proportion of olefins containing tertiary carbons in the product with low formation of undesirable by-products. Product olefins may be further processed to obtain ethers, which enjoy high current interest as components for reformulated gasoline.
    Type: Grant
    Filed: December 22, 1992
    Date of Patent: August 2, 1994
    Assignee: UOP
    Inventors: Gregory J. Gajda, Paul T. Barger, Hayim Abrevaya
  • Patent number: 5316992
    Abstract: A catalyst system comprises a physical mixture of a conversion catalyst and a sulfur sorbent to accommodate small quantities of sulfur from a hydrocarbon feedstock. Preferably, the physical mixture comprises a sulfur-sensitive reforming catalyst protected from sulfur deactivation by a manganeseoxide catalyst. The invention shows substantial benefits over prior-art processes in catalyst utilization.
    Type: Grant
    Filed: November 13, 1992
    Date of Patent: May 31, 1994
    Assignee: UOP
    Inventors: Michael B. Russ, Paul A. Sechrist
  • Patent number: 5314854
    Abstract: A reforming process, selective for the dehydrocyclization of paraffins to aromatics, is effected using a bed of catalyst particles containing multiple Group VIII (8-10) noble metals having different gradients within the catalyst particles and a nonacidic large-pore molecular sieve. The use of this bed of catalyst particles results in greater selectivity of conversion of paraffins to aromatics and improved catalyst stability, particularly in the presence of small amounts of sulfur.
    Type: Grant
    Filed: November 12, 1992
    Date of Patent: May 24, 1994
    Assignee: UOP
    Inventor: Leonid B. Galperin
  • Patent number: 5300211
    Abstract: A hydrocarbon feedstock is catalytically reformed to effect dehydrocyclization of paraffins in a process combination comprising a first reforming zone and a sulfur-removal zone utilizing a manganese component to preclude sulfur from the feed to a second reforming zone. The process combination shows substantial benefits over prior art processes in the stability of the extremely sulfur-sensitive catalyst utilized in the second reforming zone.
    Type: Grant
    Filed: December 29, 1992
    Date of Patent: April 5, 1994
    Assignee: UOP
    Inventors: Michael B. Russ, Roger L. Peer, Joseph Zmich, Chi-Chu D. Low
  • Patent number: 5294328
    Abstract: A process combination is disclosed to reduce the aromatics content of a key component of gasoline blends. Paraffins contained in catalytic reformates are conserved and upgraded by separation and isomerization, reducing the reforming severity required to achieve a given product octane with concomitant reduction in paraffin aromatization and cracking. Light reformate may be separated and isomerized, and heavier paraffins are separated from the reformate by solvent extraction or adsorption; the recovered heavy paraffins are isomerized, optionally at a substoichiometric hydrogen ratio. A gasoline component having a reduced aromatics content relative to reformate of the same octane number is blended from the net products of the separation and isomerization steps.
    Type: Grant
    Filed: July 31, 1992
    Date of Patent: March 15, 1994
    Assignee: UOP
    Inventors: Robert J. Schmidt, Paula L. Bogdan, J. W. Adriaan Sachtler, Srikantiah Raghuram
  • Patent number: 5292984
    Abstract: An improved process is disclosed for the isomerization of pentenes using a catalyst comprising a non-zeolitic molecular sieve. It is of particular interest to increase the proportion of olefins containing tertiary carbons in the product with low formation of undesirable by-products. Product olefins may be further processed to obtain methyl t-amyl ether, which enjoy high current interest as components for reformulated gasoline. Pentenes in raffinate from etherification may be returned to the isomerization process.
    Type: Grant
    Filed: December 22, 1992
    Date of Patent: March 8, 1994
    Assignee: UOP
    Inventors: Gregory J. Gajda, Paul T. Barger
  • Patent number: 5276236
    Abstract: This invention presents a novel MgAPSO molecular sieve, containing a critical range of magnesium in the sieve framework, which is particularly active for hydrocarbon conversion. The sieve advantageously is incorporated, along with a platinum-group metal, into a catalyst formulation which is useful for isomerization. When utilized in a process for isomerizing a non-equilibrium mixture of xylenes containing ethylbenzene, a greater yield of para-xylene is obtained compared to prior-art processes.
    Type: Grant
    Filed: February 16, 1993
    Date of Patent: January 4, 1994
    Assignee: UOP
    Inventors: Robert L. Patton, Stephen T. Wilson, Gregory J. Gajda
  • Patent number: 5270272
    Abstract: A sulfur-sensitive catalyst which has been deactivated by accumulating sulfur on the catalyst is desulfurized by contact with ammonia at high temperature. The technique is particularly effective for reforming catalysts containing a large-pore zeolite which are selective for dehydrocyclization of paraffins. The desulfurization may be combined with regeneration for coke removal from the catalyst.
    Type: Grant
    Filed: May 26, 1992
    Date of Patent: December 14, 1993
    Assignee: UOP
    Inventors: Leonid Galperin, Robert S. Haizmann
  • Patent number: 5258570
    Abstract: The present invention relates to a zeolite beta catalyst characterized by critical limits of weak and strong acid species and exceptionally high catalytic activity. The catalyst is activated at a temperature effective to substantially reduce the concentration of strong acid species, i.e., hydronium cations, without substantially reducing the concentration of weak acid species, i.e., hydroxoaluminum cations, preferably following a calcining step wherein a synthesized zeolite beta catalyst containing a templating agent is calcined at a temperature in the range of from about 200.degree. to 1000.degree. C. in order to remove a substantial portion of the catalyst templating agent and an ion-exchanging step wherein the calcined catalyst is ion-exchanged with a salt solution containing at least one hydrogen forming cation selected from NH.sub.4.sup.+ and quaternary ammonium. Conversion processes utilizing the catalyst of the invention also are disclosed.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: November 2, 1993
    Assignee: UOP
    Inventors: Gary W. Skeels, Edith M. Flanigen
  • Patent number: 5254789
    Abstract: An improved process is disclosed for the isomerization of olefins in gasoline-range streams using a medium-pore molecular-sieve catalyst. The process features high yields of C.sub.5 + isomerized product and avoids conversion of paraffin isomers to equilibrium values.
    Type: Grant
    Filed: August 28, 1992
    Date of Patent: October 19, 1993
    Assignee: UOP
    Inventor: Gregory J. Gajda
  • Patent number: 5242576
    Abstract: A process combination is disclosed to selectively upgrade naphtha to obtain gasoline which is in accordance with current standards for reformulated fuels. A naphtha feedstock is fractionated to selectively direct light naphtha to isomerization or blending, a heart-cut fraction to reforming, and a heavy portion to selective isoparaffin synthesis to yield light and heavy synthesis naphtha and isobutane. The heavy portion of the synthesis naphtha is processed by reforming. Light naphtha may be isomerized, with or without recycle of low-octane components of the product. A gasoline component is blended from light, synthesis, and reformate products from the process combination.
    Type: Grant
    Filed: November 21, 1991
    Date of Patent: September 7, 1993
    Assignee: UOP
    Inventors: Robert J. Schmidt, Michael B. Russ, Paula L. Bogdan, Randy J. Lawson
  • Patent number: 5235120
    Abstract: A process combination is disclosed to selectively upgrade naphtha to obtain products suitable for further upgrading to reformulated fuels. A naphtha feedstock is hydrogenated to saturate aromatics, followed by selective isoparaffin synthesis to yield light and heavy naphtha and isobutane. The heavy naphtha may be processed by reforming, light naphtha may be isomerized, and isobutane may be upgraded by dehydrogenation, etherification and/or alkylation to yield gasoline components from the process combination suitable for production of reformulated gasoline.
    Type: Grant
    Filed: November 21, 1991
    Date of Patent: August 10, 1993
    Assignee: UOP
    Inventors: Paula L. Bogdan, R. Joe Lawson, J. W. Adriaan Sachtler
  • Patent number: 5225071
    Abstract: Reforming and dehydrocyclization catalysts and processes are disclosed wherein reforming catalysts comprise a Group VIII metal and at least one medium pore non-zeolitic molecular sieve characterized in the calcined form by an adsorption of isobutane of at least 2 percent by weight at a partial pressure of 500 torr and a temperature of 20.degree. C. and characterized by an adsorption of triethylamine less than about 5 percent by weight at a partial pressure of 2.6 torr and a temperature of 22.degree. C. In one embodiment the catalyst includes a Group VII metal on a halogenated carrier.
    Type: Grant
    Filed: March 23, 1992
    Date of Patent: July 6, 1993
    Assignee: UOP
    Inventors: Peter K. Coughlin, Regis J. Pellet
  • Patent number: 5211837
    Abstract: A hydrocarbon feedstock is catalytically reformed to effect dehydrocyclization of paraffins in a process combination comprising a first reforming zone and a sulfur-removal zone utilizing a manganese component to preclude sulfur from the feed to a second reforming zone. The process combination shows substantial benefits over prior art processes in the stability of the extremely sulfur-sensitive catalyst utilized in the second reforming zone.
    Type: Grant
    Filed: February 27, 1992
    Date of Patent: May 18, 1993
    Assignee: UOP
    Inventors: Michael B. Russ, Roger L. Peer, Joseph Zmich, Chi-Chu D. Low
  • Patent number: 5200059
    Abstract: A process combination is disclosed to reduce the aromatics content and increase the oxygen content of a key component of gasoline blends. A naphtha feedstock having a boiling range usually suitable as catalytic-reforming feed is processed by selective isoparaffin synthesis to yield lower-molecular weight hydrocarbons including a high yield of isobutane. The isobutane is processed to yield an ether component by dehydrogenation and etherification. The cracked light naphtha may be upgraded by isomerization. The heavier portion of the cracked naphtha is processed in a reformer. A gasoline component containing oxygen as ether and having a reduced aromatics content and increased volumetric yield relative to reformate of the same octane number is blended from the net products of the above processing steps. The process combination is particularly suited for use in an existing refinery.
    Type: Grant
    Filed: November 21, 1991
    Date of Patent: April 6, 1993
    Assignee: UOP
    Inventors: Paula L. Bogdan, R. Joe Lawson, J. W. Adriaan Sachtler
  • Patent number: 5198097
    Abstract: A process combination is disclosed to reduce the aromatics content and increase the oxygen content of a key component of gasoline blends. A naphtha feedstock having a boiling range usually suitable as catalytic-reforming feed is processed by selective isoparaffin synthesis to yield lower-molecular weight hydrocarbons including a high yield of isobutane. A portion of the isobutane is processed to yield an ether component by dehydrogenation to yield isobutene followed by etherification. Part of the isobutane and isobutene are alkylated to produce an alkylate component. The synthesis light naphtha may be upgraded by isomerization. The heavier portion of the synthesis naphtha is processed in a reformer. A gasoline component containing oxygen as ether and having a reduced aromatics content and increased volumetric yield relative to reformate of the same octane number is blended from the net products of the above processing steps.
    Type: Grant
    Filed: November 21, 1991
    Date of Patent: March 30, 1993
    Assignee: UOP
    Inventors: Paula L. Bogdan, R. Joe Lawson, J. W. Adriaan Sachtler
  • Patent number: 5191146
    Abstract: An improved process is disclosed for the isomerization of butenes, pentenes, and heavier olefins using a catalyst comprising a non-zeolitic molecular sieve. It is of particular interest to increase the proportion of olefins containing tertiary carbons in the product with low formation of undesirable by-products. Product olefins may be further processed to obtain ethers, which enjoy high current interest as components for reformulated gasoline.
    Type: Grant
    Filed: December 30, 1991
    Date of Patent: March 2, 1993
    Assignee: UOP
    Inventors: Gregory J. Gajda, Paul T. Barger
  • Patent number: 5157178
    Abstract: An improved process combination is disclosed for the production of an oxygenated gasoline component from an FCC gasoline feed. Olefins in the cracked gasoline are isomerized using a medium-pore molecular-sieve catalyst to achieve high yields of C.sub.5 + isomerized gasoline and avoid conversion of highly branched paraffins to equilibrium values. The isomerized gasoline is etherified to obtain oxygenated gasoline.
    Type: Grant
    Filed: May 20, 1991
    Date of Patent: October 20, 1992
    Assignee: UOP
    Inventors: Gregory J. Gajda, Jule A. Rabo