Patents Represented by Attorney, Agent or Law Firm Robert A. Whitman
  • Patent number: 6204158
    Abstract: A scavenger layer is provided to prevent the diffusion of an excess mobile specie from a metal oxide ceramic into unwanted parts of a device. The scavenger layer is provided above the metal oxide ceramic. As the excess mobile specie diffuses out of the metal oxide ceramic, it migrates toward the scavenger layer and reacts with it. The reaction consumes the excess mobile specie.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: March 20, 2001
    Assignees: Advanced Technology Materials, Inc., Infineon Technologies North America Corp.
    Inventors: Bryan C. Hendrix, Frank S. Hintermaier, Jeffrey F. Roeder, Thomas H. Baum, Debra A. Desrochers
  • Patent number: 6144254
    Abstract: A low noise radio frequency amplifier is switchable between a low gain state and a high gain state. A first, common-emitter transistor is active in the high gain state and inactive in the low gain state. The first transistor has a base coupled to a radio frequency input and a first bias input, an emitter coupled to ground, and a collector coupled to an amplified radio frequency output. A second, common-base transistor is active in the low gain state and inactive in the high gain state. The second transistor has an emitter coupled to the radio frequency input, a base coupled to a second bias input, and a collector coupled to the amplified radio frequency output.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: November 7, 2000
    Assignee: Infineon Technologies Corporation
    Inventors: Robert Grant Irvine, Samuel Alfred Tiller
  • Patent number: 6121098
    Abstract: A method for forming a semiconductor device includes providing a semiconductor body having source and drain regions therein and a gate electrode on a portion of a surface of such body between the source and drain regions. A dielectric layer is provided on the surface of the semiconductor body over the source and drain regions. A dielectric material is formed over the dielectric layer and over the gate electrode. An inorganic, dielectric layer is formed over the semiconductor body dielectric material. The inorganic, dielectric layer is patterned into a mask to expose selected portions of the dielectric material, such portions being over the source and drain regions. An etch is brought into contact with the mask. The etch removes the exposed underlying portions of the dielectric material and exposed underling portions of the dielectric layer to thereby expose the portions of the source and drain regions.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: September 19, 2000
    Assignee: Infineon Technologies North America Corporation
    Inventor: Peter Strobl
  • Patent number: 6120846
    Abstract: A method is described for the selective deposition of bismuth based ferroelectric films by selective chemical vapor deposition on a substrate. Selectivity in the deposition process is attained by selection of substrate-precursor combinations which assure high bismuth deposition efficiency in certain areas and low bismuth deposition efficiency in other areas in combination with specific process parameters.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: September 19, 2000
    Assignees: Advanced Technology Materials, Inc., Infineon Technologies Corporation
    Inventors: Frank Hintermaier, Bryan Hendrix, Jeff Roeder, Peter Van Buskirk, Thomas H. Baum
  • Patent number: 5986321
    Abstract: A fuse bank for use in the laser break-link programming of an integrated circuit device. The fuse bank uses fuse elements with two ends that contain fusible regions proximate the first end and non-fusible regions proximate the second end. The fuse elements are aligned in alternately oriented parallel rows so that the first end of each fuse element is juxtaposed with the second end of any adjacent fuse element. By sequentially alternating the orientation of the fuse elements in the fuse bank, the fuse elements can be formed in a highly dense matter without bringing any two fusible regions too close to one another. Accordingly, a laser can be used to sever selected fusible regions without adversely effecting other fusible regions within the fuse bank. By alternating the orientations of sequential fuse elements, a fuse bank can be created that is twice as dense as single orientation fuse banks with only a 30% to 50% increase in size.
    Type: Grant
    Filed: April 2, 1998
    Date of Patent: November 16, 1999
    Assignee: Siemens Aktiengesellschaft
    Inventor: Karl-Heinz Froehner
  • Patent number: 5933714
    Abstract: A fuse bank for use in the laser break-link programming of an integrated circuit device. The fuse bank uses fuse elements with two ends that contain fusible regions proximate the first end and non-fusible regions proximate the second end. The fuse elements are aligned in alternately oriented parallel rows so that the first end of each fuse element is juxtaposed with the second end of any adjacent fuse element. By sequentially alternating the orientation of the fuse elements in the fuse bank, the fuse elements can be formed in a highly dense matter without bringing any two fusible regions too close to one another. Accordingly, a laser can be used to sever selected fusible regions without adversely effecting other fusible regions within the fuse bank. By alternating the orientations of sequential fuse elements, a fuse bank can be created that is twice as dense as single orientation fuse banks with only a 30% to 50% increase in size.
    Type: Grant
    Filed: June 20, 1997
    Date of Patent: August 3, 1999
    Assignee: Siemens Aktiengesellschaft
    Inventor: Karl-Heinz Froehner