Patents Represented by Attorney Scott B. Dunbar
  • Patent number: 7818064
    Abstract: The invention is a method of automatically adjusting an electrode array to the neural characteristics of an individual patient. The perceptual response to electrical neural stimulation varies from patient to patient and the response to electrical neural stimulation varies from patient to patient and the relationship between current and perceived brightness is often non-linear. It is necessary to determine this relationship to fit the prosthesis settings for each patient. It is advantageous to map the perceptual responses to stimuli. The method of mapping of the present invention is to provide a plurality of stimuli that vary in current, voltage, pulse duration, frequency, or some other dimension; measuring and recording the response to those stimuli; deriving a formula or equation describing the map from the individual points; storing the formula; and using that formula to map future stimulation.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 19, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Ione Fine, Arup Roy, Matthew J. McMahon
  • Patent number: 7813796
    Abstract: The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package, that is suitable for implantation in living tissue, such as for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a plated rivet-shaped connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: October 12, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Alfred E. Mann, Neil Talbot, Jerry Ok, Gaillard R. Nolan, Dau Min Zhou
  • Patent number: 7776197
    Abstract: An electrode surface coating and method for manufacturing the electrode surface coating comprising a conductive substrate; and one or more surface coatings comprising one or more of the following metals titanium, niobium, tantalum, ruthenium, rhodium, iridium, palladium, or gold, or an alloy of two or more metals, or a combination of two or more alloys or metal layers thereof having an increase in the surface area of 5 times to 500 times of the corresponding surface area resulting from the basic geometric shape.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: August 17, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventor: Dao Min Zhou
  • Patent number: 7765009
    Abstract: In order to generate the smallest phosphenes possible, it is advantageous to selectively stimulate smaller cells. By hyperpolarizing the somas of the large cells selectively with sub-threshold anodic ‘pre-pulse’ stimuli (making them more difficult to stimulate) and then selectively depolarize the smaller cells one can selectively stimulate smaller cells. Alternatively, one can hyperpolarize the dendrites of the cells with larger dendritic fields by applying sub-threshold anodic currents on surrounding electrodes and then depolarizing the smaller cells in the center. Further, one can manipulate the phases of an individual biphasic wave to affect selective stimulation resulting in more focal responses. It is possible to increase resolution with the ‘pre-pulse’ described above. One can also effect resolution by modifying the pulse order of the cathodic and anodic phases.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: July 27, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Matthew J. McMahon
  • Patent number: 7749608
    Abstract: The present invention provides a flexible electrode array, comprising a silicone containing body, at least one metal trace layer and at least one electrode pad on the surface.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: July 6, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Lucien D. Laude, Robert J. Greenberg
  • Patent number: 7750076
    Abstract: A polymer layer comprising silicone contains oxide particles of SiO2, TiO2, Sb2O3, SnO2, Al2O3, ZnO, Fe2O3, Fe3O4, talc, hydroxyapatite or mixtures thereof and one or more metal traces embedded in the polymer layer, where the metal trace is bonded to the polymer silicon metal bond.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: July 6, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Lucien D. Laude, Neil Hamilton Talbot, Robert J. Greenberg
  • Patent number: 7738962
    Abstract: The invention is a method of automatically adjusting an electrode array to the neural characteristics of an individual patient. The perceptual response to electrical neural stimulation varies from patient to patient and The response to electrical neural stimulation varies from patient to patient and the relationship between current and perceived brightness is often non-linear. It is necessary to determine this relationship to fit the prosthesis settings for each patient. It is advantageous to map the perceptual responses to stimuli. The method of mapping of the present invention is to provide a plurality of stimuli that vary in current, voltage, pulse duration, frequency, or some other dimension; measuring and recording the response to those stimuli; deriving a formula or equation describing the map from the individual points; storing the formula; and using that formula to map future stimulation.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: June 15, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Ione Fine, Arup Roy, Matthew J. McMahon
  • Patent number: 7734352
    Abstract: In order to generate the smallest phosphenes possible, it is advantageous to selectively stimulate smaller cells. By hyperpolarizing the somas of the large cells selectively with sub-threshold anodic ‘pre-pulse’ stimuli (making them more difficult to stimulate) and then selectively depolarize the smaller cells one can selectively stimulate smaller cells. Alternatively, one can hyperpolarize the dendrites of the cells with larger dendritic fields by applying sub-threshold anodic currents on surrounding electrodes and then depolarizing the smaller cells in the center. Further, one can manipulate the phases of an individual biphasic wave to affect selective stimulation resulting in more focal responses. It is possible to increase resolution with the ‘pre-pulse’ described above. One can also effect resolution by modifying the pulse order of the cathodic and anodic phases.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: June 8, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Matthew J. McMahon
  • Patent number: 7725191
    Abstract: The present invention is an implantable electronic device formed within a biocompatible hermetic package. Preferably the implantable electronic device is used for a visual prosthesis for the restoration of sight in patients with lost or degraded visual function. The package may include a hard hermetic box, a thin film hermetic coating, or both.
    Type: Grant
    Filed: October 28, 2007
    Date of Patent: May 25, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Joseph H. Schulman
  • Patent number: 7709961
    Abstract: An implantable hermetically sealed microelectronic device and method of manufacture are disclosed. The microelectronic device of the present invention is hermetically encased in a insulator, such as alumina formed by ion bean assisted deposition (“IBAD”), with a stack of biocompatible conductive layers extending from a contact pad on the device to an aperture in the hermetic layer. In a preferred embodiment, one or more patterned titanium layers are formed over the device contact pad, and one or more platinum layers are formed over the titanium layers, such that the top surface of the upper platinum layer defines an external, biocompatible electrical contact for the device. Preferably, the bottom conductive layer is larger than the contact pad on the device, and a layer in the stack defines a shoulder.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: May 4, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, Jerry Ok, Honggang Jiang
  • Patent number: 7706893
    Abstract: The present invention is a micro-machined electrode for neural-electronic interfaces which can achieve a ten times lower impedance and higher charge injection limit for a given material and planar area.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: April 27, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Andy Hung, Robert Greenberg, Dau Min Zhou, Jack Judy, Neil Talbot
  • Patent number: 7691252
    Abstract: The present invention relates to a process for cathodic protection of electrode or electrode materials wherein negative bias is applied on the electrode. the negative bias is obtained by asymmetric current pulse. The asymmetric current pulse is obtained by performing negative phase with higher amplitude. The asymmetric current pulse is obtained by performing negative phase with wider pulse width than that of the anodic phase. The asymmetric current pulse is obtained by performing negative phase with higher amplitude and with wider pulse width than that of the anodic phase. The present invention further relates to a process for cathodic protection of electrode or electrode materials, wherein negative bias is applied on the electrode, wherein the negative bias is obtained by asymmetric current pulse, wherein the asymmetric current pulse is obtained by performing negative phase with wider pulse width than that of the anodic phase. The wider pulse width is obtained by pulse trains.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: April 6, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Dao Min Zhou, Amy Hines, James Singleton Little, Robert J. Greenberg
  • Patent number: 7676274
    Abstract: The present invention is a micro-machined electrode for neural-electronic interfaces which can achieve a ten times lower impedance and higher charge injection limit for a given material and planar area.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: March 9, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Andy Hung, Robert Greenberg, Dau Min Zhou, Jack Judy, Neil Talbot
  • Patent number: 7666523
    Abstract: An electrode surface coating and method for manufacturing the electrode surface coating comprising a conductive substrate; and one or more surface coatings comprising one or more of the following metals titanium, niobium, tantalum, ruthenium, rhodium, iridium, palladium, or gold, or an alloy of two or more metals, or a combination of two or more alloys or metal layers thereof having an increase in the surface area of 5 times to 500 times of the corresponding surface area resulting from the basic geometric shape.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: February 23, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventor: Dao Min Zhou
  • Patent number: 7668599
    Abstract: The present invention is a visual prosthesis for the restoration of sight in patients with lost or degraded visual function. The visual prosthesis includes a user interface which controls function of the visual prosthesis to optimize operation for each individual patient. The user interface controls functions such as brightness, contrast, magnification, frequency, pulse width, or amplitude. The user interface may also individually control points of neural stimulation.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: February 23, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Joseph H. Schulman
  • Patent number: 7645262
    Abstract: The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package that is suitable for implantation in living tissue, such as for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a plated rivet-shaped connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: January 12, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Jerry Ok
  • Patent number: 7638032
    Abstract: The present invention relates to a process for cathodic protection of electrode or electrode materials wherein negative bias is applied on the electrode. the negative bias is obtained by asymmetric current pulse. The asymmetric current pulse is obtained by performing negative phase with higher amplitude. The asymmetric current pulse is obtained by performing negative phase with wider pulse width than that of the anodic phase. The asymmetric current pulse is obtained by performing negative phase with higher amplitude and with wider pulse width than that of the anodic phase. The present invention further relates to a process for cathodic protection of electrode or electrode materials, wherein negative bias is applied on the electrode, wherein the negative bias is obtained by asymmetric current pulse, wherein the asymmetric current pulse is obtained by performing negative phase with wider pulse width than that of the anodic phase. The wider pulse width is obtained by pulse trains.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: December 29, 2009
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Dao Min Zhou, Amy Hines, James Singleton Little, Robert J. Greenberg
  • Patent number: 7631424
    Abstract: The present invention provides a flexible circuit electrode array adapted for neural stimulation, comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces at least one tack opening; wherein said polymer base layer, said metal traces and said polymer top layer are thermoformed in a three dimensional shape. The present invention provides further a method of making a flexible circuit electrode array comprising depositing a polymer base layer; depositing metal on said polymer base layer; patterning said metal to form metal traces; depositing a polymer top layer on said polymer base layer and said metal traces; preparing at least one tack opening; and heating said flexible circuit electrode array in a mold to form a three dimensional shape in said flexible circuit electrode array.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: December 15, 2009
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, James Singleton Little, Brian V. Mech
  • Patent number: D600440
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: September 22, 2009
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Sanjay Gaikwad, Arup Roy, Kelly H. McClure
  • Patent number: D607565
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: January 5, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Kelly H. McClure, Sanjay Gaikwald, Timothy M. Nugent