Patents Represented by Attorney, Agent or Law Firm Stephen W. Bauer
  • Patent number: 7657323
    Abstract: Apparatus and methods are disclosed for inserting electrical leads within a heart. A method is provided for positioning a medical electrical lead in a cardiac vein. The method comprises inserting a lead within a coronary sinus, dispersing at least one vasodilating agent to dilate at least one cardiac vein, and inserting the lead into a dilated cardiac vein.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: February 2, 2010
    Assignee: Medtronic, Inc.
    Inventors: Berthold Kramm, Volker Döernberger
  • Patent number: 7657307
    Abstract: A method of classifying arrhythmias using scatter plot analysis to define a measure of variability of a cardiac rhythm parameter such as for example, without limitation, R-R interval, A-A interval, and the slope of a portion of a cardiac signal, is disclosed. The variability measurement is derived from a scatter plot of a cardiac rhythm parameter, employing a region counting technique that quantifies the variability of the cardiac rhythm parameter while minimizing the computational complexity. The method may be employed by an implantable medical device or system, such as an implantable pacemaker or cardioverter defibrillator, or by an external device or system, such as a programmer or computer. The variability measurement may be correlated with other device or system information to differentiate between atrial flutter and atrial fibrillation, for example. The variability information may also be used by the device or system to select an appropriate therapy for a patient.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: February 2, 2010
    Assignee: Medtronic, Inc.
    Inventors: Peter M. Van Dam, Joanneke G. Groen
  • Patent number: 7650190
    Abstract: A method and apparatus for delivering corrective therapy through hormone regulation is provided. Inhibition of sympathetic fibers by spinal cord stimulation is used to regulate the levels of hormones such as catecholamines, renin, and calcitonin gene-related peptide. The invention utilizes a closed or open loop feedback system in which physiological parameters such as the concentrations of hormones and sympathetic indicators such as heart rate and urine production are monitored and used to determine the appropriate level of neurostimulation. The site of electrical stimulation includes, but is not limited to, the spinal cord at levels T7-L2 and the associated neural fibers within a region of the T7-L2 dermatomes.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: January 19, 2010
    Assignee: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Thomas J. Mullen, Gary W. King, Michael R. S. Hill
  • Patent number: 7647103
    Abstract: In general, the invention is directed to techniques for detecting and addressing pacemaker syndrome. When a pacemaker detects a risk of pacemaker syndrome, the pacemaker paces one or more chambers of the heart to reduce the risk of pacemaker syndrome. One pacing technique is to apply ventricular paces, thereby reducing the delay between the atrial activation and the ventricular activation. Another technique, available to a patient who receives atrial pacing, is to decrease the atrial pacing rate.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: January 12, 2010
    Assignee: Medtronic, Inc.
    Inventor: Giorgio Corbucci
  • Patent number: 7647105
    Abstract: A method and an apparatus for treating cardiac arrhythmias are provided. An interval between first and second consecutive beats of a heart, having first and second chamber types, is determined. The heart is paced at a first rate if the first beat is from the first chamber type and the second beat is from the second chamber type and the interval is less than a predetermined amount of time or if the first and second beats are both from the second chamber type. The heart is paced at a second rate if the first beat is from the first chamber type and the second beat is from the second chamber type and the interval is more than the predetermined amount of time.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: January 12, 2010
    Assignee: Medtronics, Inc.
    Inventors: H. Toby Markowitz, Matthew Harris, Trina Ann Brand
  • Patent number: 7647106
    Abstract: It has been discovered that a change in posture that results in an increase in orthostatic stress, when followed by a withdrawal of sympathetic nervous activity, may indicate a future onset of vasovagal syncope (VVS). The invention is directed to devices and techniques for early detection of an episode of VVS so that therapies may be applied in advance of the episode to prevent the episode from occurring. Detection of a posture transition triggers a device such as an implanted pacemaker to determine an indicator of an autonomic nervous system activity of the patient. As a function of this determination, the device estimates a probability that the patient will experience VVS. When the probability exceeds a threshold, preventative therapy may be applied to address the VVS and to reduce the risk that the patient will faint.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: January 12, 2010
    Assignee: Medtronic, Inc.
    Inventors: Nathalie Virag, Rolf Vetter, Richard Sutton
  • Patent number: 7632234
    Abstract: An implantable biosensor system is disclosed for determining levels of cardiac markers in a patient to aid in the diagnosis, determination of the severity and management of cardiovascular diseases. The sensor includes nanowire sensor elements having a biological recognition element attached to a nanowire transducer that specifically binds to the cardiac marker being measured. Each of the sensor elements is associated with a protective member that prevents the sensor element from interacting with the surrounding environment. At a selected time, the protective member may be disabled, thereby allowing the sensor element to begin sensing signals within a living body.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: December 15, 2009
    Assignee: Medtronic, Inc.
    Inventors: Ven Manda, Tommy D. Bennett, Zhongping Yang
  • Patent number: 7627376
    Abstract: An implantable medical device is configured so that all of the major components including a housing and attached leads are disposed within the vasculature of a patient. A tether extends from the housing of the device to an implant location where the tether is secured to tissue outside of the vasculature. In this manner, an intravascular medical device may be implanted at a location remote from final placement, delivered via the vasculature and anchored at the initial entry point.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: December 1, 2009
    Assignee: Medtronic, Inc.
    Inventors: Charles L. Dennis, George J. Klein, Ursula Gebhardt, Kenneth M. Anderson, Glenn C. Zillmer
  • Patent number: 7627368
    Abstract: A medical device performs a method for detecting atrial arrhythmias. A signal including ventricular cycle length information is sensed in a patient and used to determine each difference between successive ventricular cycle lengths occurring during a predetermined time period. Each succeeding difference is stored as a data point in a histogram, and a metric of variability of the data points of the histogram is determined. An atrial arrhythmia is detected in response to the metric crossing a threshold. The threshold is determined in response to the number of ventricular cycle lengths occurring during the predetermined time period.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: December 1, 2009
    Assignee: Medtronic, Inc.
    Inventors: Richard P.M. Houben, Vincent Larik, Tim D.J. Jongen
  • Patent number: 7616992
    Abstract: An implantable medical device is configured so that all of the major components including a housing and attached leads are disposed within the vasculature of a patient. A tether extends from the housing of the device to an implant location where the tether is secured to tissue outside of the vasculature. In this manner, an intravascular medical device may be implanted at a location remote from final placement, delivered via the vasculature and anchored at the initial entry point.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: November 10, 2009
    Assignee: Medtronic, Inc.
    Inventors: Charles L. Dennis, George J. Klein, Ursula Gebhardt, Kenneth M. Anderson, Glenn C. Zillmer
  • Patent number: 7610088
    Abstract: A system and method for monitoring left ventricular (LV) lateral wall motion and for optimizing cardiac pacing intervals based on left ventricular lateral wall motion is provided. The system includes an implantable or external cardiac stimulation device in association with a set of leads including a left ventricular epicardial or coronary sinus lead equipped with a motion sensor electromechanically coupled to the lateral wall of the left ventricle. The device receives and processes wall motion sensor signals to determine a signal characteristic indicative of systolic LV lateral wall motion or acceleration. An automatic pacing interval optimization method evaluates the LV lateral wall motion during varying pacing interval settings, including atrial-ventricular intervals and inter-ventricular intervals and selects the pacing interval setting(s) that correspond to LV lateral wall motion associated with improved cardiac synchrony and hemodynamic performance.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: October 27, 2009
    Assignee: Medtronic, Inc.
    Inventor: Edward Chinchoy
  • Patent number: 7599739
    Abstract: A pacing control is used in multi-chamber cardiac potentiation therapy to provide a first premature pacing pulse to a first chamber based on a previous event sensed in the first chamber, and to provide a second premature pacing pulse to a second chamber based on a previous event sensed in the second chamber.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: October 6, 2009
    Assignee: Medtronic, Inc.
    Inventor: John Harrison Hudnall
  • Patent number: 7599740
    Abstract: Pacing parameters are provided to address cross talk and intrinsic ventricular events occurring within a predefined blanking period following an atrial event. The parameters are used in conjunction with protocol for minimizing or reducing ventricular pacing, wherein ignoring intrinsic ventricular events during the blanking period might otherwise affect the performance of the protocol.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: October 6, 2009
    Assignee: Medtronic, Inc.
    Inventors: Robert A. Betzold, David A. Casavant, Paul A. Belk, Thomas J. Mullen, John C. Stroebel, Steven R. Hornberger, Todd J. Sheldon, Douglas A. Peterson
  • Patent number: 7593773
    Abstract: An implantable medical device operates to promote intrinsic ventricular depolarization according to a pacing protocol. The medical device operates to promote intrinsic conduction by providing elongated AV intervals or operating in an atrial based pacing mode. Conduction checks to determine if AV conduction is present are performed on a graduated or progressive scale to facilitate intrinsic emergence.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: September 22, 2009
    Assignee: Medtronic, Inc.
    Inventors: Willem Boute, Mattias Rouw
  • Patent number: 7591185
    Abstract: An implantable pressure sensor, which may be incorporated within an implantable medical electrical lead, includes an insulative sidewall, which contains a gap capacitor and an integrated circuit. The insulative sidewall of the pressure sensor includes a pressure sensitive diaphragm portion, and the gap capacitor includes a first electrode plate, which is attached to an interior surface of the diaphragm portion of the sidewall, and a second electrode plate, which is spaced apart from the first electrode plate and coupled to the integrated circuit, which is coupled, through the sidewall, to a supply contact and a ground contact. A conductive layer extends over one of the interior surface of the diaphragm portion of the sidewall and an exterior surface of the diaphragm portion; and the conductive layer is coupled to the ground contact to either shield or ground the first electrode plate.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: September 22, 2009
    Assignee: Medtronic, inc.
    Inventors: Kamal Deep Mothilal, Michael A. Schugt, David A. Ruben, Jonathan P. Roberts, Clark B. Norgaard, Lary R. Larson
  • Patent number: 7587242
    Abstract: A preferred atrial-based pacing method and apparatus is provided using an intelligent cardiac pacing system to having the ability to continue atrial-based pacing as long as relatively reliable AV conduction is present. In the event that such relatively reliable AV conduction is not present, mode switching to a DDD/R or a DDI/R pacing mode while continually biased to mode switch back to atrial-based pacing. The standard or relatively reliable AV conduction may be changed either automatically or manually. This increases pacing that utilizes natural AV conduction however possible so as to gain all the benefits of cardiac contractile properties resulting therefrom, while tolerating the occasional missed ventricular depolarization (i.e., non-conducted P-wave). In the event where relatively reliable AV conduction is not present, the pacing mode is switched to a DDD/R mode while detecting a return of the relatively reliable AV conduction (and resulting mode switch to preferred atrial based pacing).
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: September 8, 2009
    Assignee: Medtronic, Inc.
    Inventors: David A. Casavant, Paul A. Belk, Thomas J. Mullen, John C. Stroebel
  • Patent number: 7577480
    Abstract: Upon delivery of a pacing pulse to a heart by an electrode of an implantable medical device (IMD), a deleterious pace polarization artifact is generally created at the electrode-tissue interface and subsequently stored by the electrode. Such polarization artifact is generally minimized through the use of passive recharge circuitry. Such passive recharge circuitry functions in creating a recharge pulse at the electrode which in essence, minimizes the polarization artifact on the electrode. In order to produce further artifact minimization from a subsequent pacing pulse, following termination of the recharge pulse, any remaining polarization artifact is sampled and analyzed by the IMD and IMD software optionally compensates the next recharge pulse to further minimize the polarization artifact generated by a next pacing pulse. This sampling and optional compensation is repeated for subsequent pacing pulses so that polarization artifacts are effectively analyzed and if necessary, minimized.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: August 18, 2009
    Assignee: Medtronic, Inc.
    Inventor: Volkert A. Zeijlemaker
  • Patent number: 7563231
    Abstract: An improved method and apparatus for measuring changes in blood flow, particularly in the context of an automatic arrhythmia treatment device. The invention may employ a flow sensor which is activated in response to detection of a tachyarrhythmia or in response to delivery of an anti-tachyarrhythmia therapy. If activated in response to detection of tachyarrhythmia, the flow sensor may be employed to determine whether a substantial drop in cardiac output has or has not occurred, in order to select an appropriate therapy, in particular to avoid unnecessary delivery of high level shocks. If activated in response to delivery of an anti-tachyarrhythmia therapy, the flow sensor may be employed to determine whether the therapy was or was not successful in correcting a low cardiac output or whether a reduced cardiac output followed delivery of the therapy.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: July 21, 2009
    Assignee: Medtronic, Inc.
    Inventor: Sourav Bhunia
  • Patent number: 7561914
    Abstract: In bi-ventricular pacing devices (including CRT devices) analysis of myocardial electrogram signals in one ventricle (e.g., a left ventricle, or “LV”) can be used to infer capture or loss-of-capture (LOC) of an earlier stimulus pulse in the same ventricle, on a continuous (every pacing cycle), triggered, aperiodic and/or periodic basis. Rather than using an evoked-response principle as has been the basis of capture detection in prior art and other systems, a principle employed via the present invention uses evidence of inter-ventricular conduction (i.e., from the opposite chamber) and/or atrio-ventricular conduction as evidence of LOC, since a non-capturing pacing stimulus provided to a first chamber will allow the myocardial tissue of the first chamber to remain non-refractory and thus inter-ventricular and atrio-ventricular wavefront propagation and conduction can commence and be detected thereby revealing whether LOC has occurred.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: July 14, 2009
    Assignee: Medtronic, Inc.
    Inventors: James W. Busacker, Todd J. Sheldon
  • Patent number: 7558626
    Abstract: The invention is directed to techniques for providing cardiac resynchronization therapy by synchronizing delivery of pacing pulses to the left ventricle with intrinsic right ventricular depolarizations. An implantable medical device measures an interval between an atrial depolarization and an intrinsic ventricular depolarization is measured. In various embodiments, the intrinsic ventricular depolarization may be an intrinsic right or left ventricular depolarization. The implantable medical device delivers pacing pulses to the left ventricle to test a plurality of pacing intervals. The pacing intervals tested may be within a range around the measured interval between the atrial depolarization and the intrinsic ventricular depolarization. One of the pacing intervals is selected based on a measured characteristic of an electrogram that indicates ventricular synchrony. For example, the pacing interval may be selected based on measured QRS complex widths and/or Q-T intervals.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: July 7, 2009
    Assignee: Medtronic, Inc.
    Inventor: Giorgio Corbucci