Abstract: The present invention provides for a microphone. The microphone includes a housing, a port disposed in the housing leading to an interior chamber, and a diaphragm with a first side and a second side. The first side of the diaphragm faces the port. The microphone includes a shunt channel from the port to the second side of the diaphragm. The shunt channel receives a wind noise signal to reduce the effects of the wind noise signal on the diaphragm.
Abstract: The present invention provides a microphone apparatus. The microphone apparatus includes a housing with an outer surface and an interior chamber. A microphone element is disposed within the interior chamber. The outer surface includes a first substantially planar surface having at least one aperture leading to the interior chamber and a second substantially planar surface intersecting at an angle with the first planar surface.
Type:
Grant
Filed:
December 23, 2003
Date of Patent:
November 20, 2007
Assignee:
Plantronics, Inc.
Inventors:
Billy J. Worley, Robert L. Doss, David G. Lashley
Abstract: An audio limiting circuit capable of satisfying frequency dependent limits and time domain constraints, is disclosed. In one illustrative embodiment, an input node receives an unattenuated input signal and a system modeling filter predicts the amount, if any, by which the sound pressure level that would be generated by an acoustic transducer in response to the unattenuated input signal, would exceed one or more predetermined limits. In that embodiment, an energy detector separates the excess predicted sound pressure level into one or more frequency bands and calculates the average acoustic energy associated with each band. A gain logic block determines an attenuation factor based on whether one or more of the predetermined limits has been exceeded and the attenuation factor values are smoothed to minimize abrupt changes to the unattenuated input signal. A delay buffer delays the unattenuated input signal values.
Abstract: Various methods and apparatus are described for implementing effective echo suppression in a wide variety of telephony system architectures. These methods and apparatus include broadband and multi-band techniques for speech detection, estimation of near-end transmission path attenuation, and estimation of far-end transmission path attenuation and delay.
Abstract: An apparatus for inductive charging a battery. The apparatus includes a housing with a lower surface and a charging surface. A rechargeable device with a rechargeable battery may be placed on the charging surface. The apparatus further includes a controller for driving an oscillator, wherein the controller receives power from a power source. A first charger coil and second charger coil are disposed within the housing and are coupled to the oscillator. The first charger coil and second charger coil create a substantially horizontal magnetic field in the volume of space above the charging surface.
Abstract: The present invention provides a solution to the needs described above through a method and apparatus for a wireless network. The network includes a first wireless device and a second wireless device. The first wireless device comprises a transceiver for receiving and transmitting signals utilizing a wireless air interface and communication protocol. The second wireless device is capable of communicating with the first wireless device using the wireless air interface and communication protocol. The second wireless device is further capable of receiving and transmitting signals utilizing an IEEE 802.11 wireless protocol. The network further includes a wired device for communicating with the second wireless device utilizing the IEEE 802.11 wireless protocol.
Abstract: The present invention provides a communications headset. The communications headset includes an earbud with a speaker to be disposed near the ear of a headset user, a microphone, and an electrical connector designed to couple with a communications device. An electrical cord is coupled between the earbud and the electrical connector. A spring cord is coupled between the earbud and the microphone. The microphone is capable of bidirectional movement with associated extension and retraction of the spring cord.
Abstract: The present invention provides a solution to the needs described above through a microphone PCB with an integrated filter. The invention provides for an electret microphone assembly. The microphone assembly includes a multilayer printed circuit board. A field effect transistor with a gate is coupled to the electret microphone. The field effect transistor drain is coupled to provide audio frequency output to an audio output node, and the field effect transistor source is coupled to a ground. A first end of a resistor is coupled to the drain of the field effect transistor and the second end is coupled to a filter. The filter attenuates unwanted electromagnetic interference associated with a radio frequency transmitter.
Abstract: The present invention provides a solution to the needs described above through an inventive charger contact. The conductive contact includes a housing with an outer cylindrical surface and a hollow inner cylindrical core with a longitudinal axis. An actuator is disposed within the hollow inner cylindrical core capable of movement within the cylindrical core along the axis. A spring contact with conductive contacts is disposed in part within the hollow inner cylindrical core and coupled to the actuator. The spring contact is capable of compression and decompression along the longitudinal axis based on movement of the actuator.
Abstract: A headset microphone boom that includes a hollow tubular member with a reflective interior surface. A light disperser is coupled to the hollow tubular member at one end and a light emitting device is coupled to the hollow tubular member at the other end. Light is transmitted from the light emitting device through the hollow tubular member to the light disperser. Sound waves are simultaneously transmitted from an acoustic port through the hollow tubular member to a microphone.