Patents Represented by Attorney, Agent or Law Firm Thomas F. Woods
  • Patent number: 6308105
    Abstract: A system for providing electrical stimulation to the trigeminal nerve through a lead. The lead features a lead body, a coupling for connecting a lead into a medical stimulator and a distal electrode assembly. The electrode assembly features a pair of oppositely disposed curved semi-circular cuffs disposed to conform a lumen therethrough. The ends of each cuff are mounted into a resilient hinge disposed upon the distal end of the lead body. The hinge biases the cuffs towards one another in such a manner that the lumen is maintained patent such that the nerve will remain therein. The hinge is further designed so as to be easily opened so as to spread the cuffs apart. Hinge opening is accomplished through a specialized implant tool, the implant tool being a generally cylindrical tube designed to meet about the lead body. A divergence in the lead body near the hinge permits the implant tool to engage the lead body in that section and thus forces the cuffs apart.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: October 23, 2001
    Assignee: Medtronic Inc.
    Inventors: Victor P.J. Duysens, Leo Kretzers, Paulus Van Venrooij, Paulus A. A. Gubbels, Paulus G. Adams
  • Patent number: 6305381
    Abstract: A system and method for locating an implantable medical device. The system consists of a flat “pancake” antenna coil positioned concentric with the implantable medical device target, e.g. the drug reservoir septum. The system further features a three location antenna array which is separate from the implantable device and external to the patient. The antenna array features three or more separate antennas which are used to sense the energy emitted from the implanted antenna coil. The system further features a processor to process the energy ducted by the antenna array. The system senses the proximity to the implant coil and, thus, the implant device by determining when an equal amount of energy is present in each of the antennas of the antenna array and if each such ducted energy is greater than a predetermined minimum. When such a condition is met, the antenna array is aligned with the implant coil. Thus the needle port through the antenna array is lined up with the septum of the drug reservoir.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: October 23, 2001
    Assignee: Medtronic Inc.
    Inventors: Koen J. Weijand, Markus Haller, Marty Bakx, Robert Leinders, Todd Goblish, Jon Werder
  • Patent number: 6303179
    Abstract: A method of modifying the surface characteristics of a substrate having a surface with an amide-functional polymer thereon. The method involves contacting the amide-functional polymer with a source of hydroxide ions and a source of hypohalite ions at a temperature of at least about 20° C. for a time effective to convert at least a portion of the amide-functional groups to amine-functional groups to form a substrate surface comprising an amine-functional polymer, wherein the hydroxide ions are present in a molar excess relative to the hypohalite ions and at a concentration of no more than about 0.1 M, based on the total volume of the reaction mixture. A biomolecule is attached to the resultant amine-functional polymer.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: October 16, 2001
    Assignee: Medtronic, INC
    Inventors: Edouard Koulik, Michel Verhoeven, Patrick Cahalan, Linda Cahalan, Judith Vincent
  • Patent number: 6301507
    Abstract: A medical electrical lead having a pre-formed atrial portion assuming a distinctive U-shape is disclosed. The U-shaped atrial portion of the lead is configured and dimensioned to cause at least one atrial electrode disposed thereon to be pushed against the right atrial wall or right atrial sinus wall through pushing forces generated by the lead pressing against regions of the heart located near the superior vena cava or the tricuspid valve, and/or through the action of gravity. The lead provides superior coupling of the atrial electrodes thereof to the walls of the right atrium, and may be configured for single pass DDD stimulation of the right atrium and the right ventricle or other portions of the heart such as the coronary sinus or the great cardiac vein.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: October 9, 2001
    Assignee: MedTronic, Inc
    Inventors: Arnoldus Bakels, Nicolaas Lokhoff
  • Patent number: 6286346
    Abstract: A method and apparatus including conditional add and conditional add/subtract instructions are provided for use in the instruction set of a medical device instruction processor. More specifically, the conditional add and add/subtract instructions are provided to add two operands if a predetermined condition is satisfied within the instruction processor hardware. Additionally, the conditional add/subtract instruction may be used to subtract one operand from another operand if the predetermined condition is not satisfied. These instructions are adapted for use in implementing an efficient, interruptible, firmware-controlled multiplication or division mechanism. The inventive system allows multiplication or division operations to be interrupted at various intermediate points during the multiplication or division operation to thereby reducing interrupt latency.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: September 11, 2001
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Hocken, Jr., Kevin K. Walsh, Jeffrey D. Wilkinson
  • Patent number: 6278897
    Abstract: A medical electrical lead and introducer system. The lead is a single pass, dual chamber lead, which features in one embodiment an atrial tine. The introducer system is particularly designed for introduction of single pass, dual chamber lead which has an atrial tine. The introducer system facilitates the introduction of a such lead into a patient's heart while safeguarding the tine from damage due to kinking during lead positioning. The lead is a single pass lead which features an atrial tine while the introducer system is particularly designed for introduction of a such lead into a patient's heart so as to safeguard the tine from damage due to kinking during lead positioning. The lead is designed so as to electrically couple both the atrium and the ventricular chambers of the heart. The lead generally features several lengths each having differing stiffness as well as a pre-formed bend. The lead also features a atrial tine having an electrode at the tip.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: August 21, 2001
    Assignee: Medtronic, INC
    Inventors: Jean J. G. Rutten, Karel Smits, Nicolaas Lokhoff, Paulus Van Venrooij
  • Patent number: 6274265
    Abstract: A method of evaluating an electrochemical cell for a metallic contaminant-caused defect. The electrochemical cell is configured for use with an implantable medical device and includes an anode, a solid cathode and a liquid electrolyte. The method includes storing the cell at an elevated temperature following assembly for accelerating corrosion of possible metallic contaminants. A parameter of the cell related to cell voltage is then measured. An evaluation is made as to whether the cell is defective based upon this measured parameter.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: August 14, 2001
    Assignee: Medtronic, Inc.
    Inventors: Robert E. Kraska, Donald R. Merritt, Craig L. Schmidt, Paul M. Skarstad
  • Patent number: 6270788
    Abstract: A method for making a biocompatible medical article, and preferably, a blood compatible medical article, through the use of a copolymer coating. The copolymer coating is synthesized using methacrylate or acrylate monomers with a functional group (primary amino group) for subsequent attachment of heparin. Synthesis of the copolymer coating is carried out using the proper proportion of hydrophobic monomer/hydrophilic monomer/functional monomer in order to optimize the solubility of the copolymer in alcohol, its insolubility in water (before and after heparin coupling), the heparin coupling efficacy and heparin bioactivity. Once the copolymer coating is fashioned, a medical article is coated with it. The coating is thereafter dried and heparin attached. In such a manner the present invention provides for a method for making a biocompatible medical article, and preferably, a blood compatible medical article.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: August 7, 2001
    Assignee: Medtronic INC
    Inventors: Edouard Koulik, Larik Vincent, Patrick Cahalan, Eric Fogt, Kazuhiko Ishihara, Nobuo Nakabayashi
  • Patent number: 6268725
    Abstract: A flux-gate magnetometer having a drive signal for reducing the effects of electromagnetic interference (EMI) is provided. The drive signal has a characteristic that varies over time. For example, the drive signal may include a duty cycle that varies over time, the frequency of the drive signal may be varied over time, or the phase shift of the drive signal may vary over time.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: July 31, 2001
    Assignee: Medtronic, Inc.
    Inventors: Scott D. Vernon, Larry E. Tyler
  • Patent number: 6269269
    Abstract: A method and apparatus for synchronized treatment of obstructive sleep apnea. In one embodiment such stimulation is provided by an implantable pulse generator, the implantable pulse generator having a stimulation stage to output stimulation pulses to a body structure, a sensing stage to sense the respiratory effort of a patient, and a controller, to coordinate, and preferably to synchronize, the output stimulation pulses with the sensed respiratory effort. The respiratory effort of a patient is sensed through the use of two electrodes disposed such that the diaphragm is positioned between, and the high frequency current is injected from one electrode to the other and the corresponding impedance is measured, the corresponding impedance thus being a function of the diaphragm position, itself indicating the respiratory effort of the patient. In such a manner the present invention permits the delivery of stimulation to be precisely controlled by the actual respiratory effort of the patient.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: July 31, 2001
    Assignee: Medtronic Inc.
    Inventors: Frans A. M. Ottenhoff, Koen J. Michels
  • Patent number: 6261280
    Abstract: There is provided an implantable system and method for monitoring pancreatic beta cell electrical activity in a patient in order to obtain a measure of a patient's insulin demand and blood glucose level. A stimulus generator is controlled to deliver stimulus pulses so as to synchronize pancreatic beta cell depolarization, thereby producing an enhanced electrical signal which is sensed and processed. In a specific embodiment, the signal is processed to determine the start and end of beta cell depolarization, from which the depolarization duration is obtained. In order to reduce cardiac interference, each stimulus pulse is timed to be offset from the QRS signal which can interfere with the pancreas sensing. Additionally, the beta cell signals are processed by a correction circuit, e.g., an adaptive filter, to remove QRS artifacts, as well as artifacts from other sources, such as respiration.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: July 17, 2001
    Assignee: Medtronic, INC
    Inventors: Richard P. M. Houben, Alexis C. M. Renirie, Koen J. Weijand
  • Patent number: 6263249
    Abstract: An elongate elastomeric structure having controlled surface texture. Plasma deposition is used to create controlled features, such as ridges, on the external surface of an elongate elastomeric surface, such as the external surface of silicone tubing. The invention has particular applicability in the medical device field, such as the fabrication of implantable leads, catheters, and medical devices incorporating them.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: July 17, 2001
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Stewart, Vernon B. Iverson, Kenneth W. Keeney, Catherine E. Taylor
  • Patent number: 6258371
    Abstract: A method for making a biocompatible medical article, and preferably, a blood compatible medical article, through the use of a copolymer coating. The copolymer coating is synthesized using methacrylate or acrylate monomers with a functional group (primary amino group) for subsequent attachment of heparin. Synthesis of the copolymer coating is carried out using the proper proportion of hydrophobic monomer/hydrophilic monomer/functional monomer in order to optimize the solubility of the copolymer in alcohol, its insolubility in water (before and after heparin coupling), the heparin coupling efficacy and heparin bioactivity. Once the copolymer coating is fashioned, a medical article is coated with it. The coating is thereafter dried and heparin attached. In such a manner the present invention provides for a method for making a biocompatible medical article, and preferably, a blood compatible medical article.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: July 10, 2001
    Assignee: Medtronic Inc
    Inventors: Edouard Koulik, Larik Vincent, Patrick Cahalan, Eric Fogt, Kazuhiko Ishihara, Nobuo Nakabayashi
  • Patent number: 6256537
    Abstract: There is provided a system for regulating ventricular rate in the presence of abnormally high atrial rates, e.g., during episodes of atrial fibrillation. During such an episode, the system, preferably incorporated into an implantable pacemaker, applies subthreshold bursts of stimulus pulses to or proximate to the patient's AV node so as to inhibit conduction of electrical signals through to the ventricle during the bursts. The bursts are timed in relation to the last conducted ventricular signal, and in terms of burst length, to provide a rate of conducted signals through the AV node which results in a substantially regular and reduced ventricular rate. During the inhibition mode of operation, the system monitors to determine the efficacy of inhibition, by tracking the percentage of ventricular senses that occur during the burst periods.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: July 3, 2001
    Assignee: Medtronic, Inc.
    Inventors: Gustaaf A. P. Stoop, Josephus P. A. Smit, Peter Van Dam
  • Patent number: 6251126
    Abstract: A method and apparatus for synchronized treatment of obstructive sleep apnea. In one embodiment such stimulation is provided by an implantable pulse generator, the implantable pulse generator having a stimulation stage to output stimulation pulses to a body structure, a sensing stage to sense the respiratory effort of a patient, and a controller, to coordinate, and preferably to synchronize, the output stimulation pulses with the sensed respiratory effort. The respiratory effort of a patient is sensed through the use of two electrodes disposed such that the diaphragm is positioned between, and the high frequency current is injected from one electrode to the other and the corresponding impedance is measured, the corresponding impedance thus being a function of the diaphragm position, itself indicating the respiratory effort of the patient. In such a manner the present invention permits the delivery of stimulation to be precisely controlled by the actual respiratory effort of the patient.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: June 26, 2001
    Assignee: Medtronic INC
    Inventors: Frans A. M. Ottenhoff, Koen J. Michels
  • Patent number: 6253109
    Abstract: There is provided apparatus and a method for testing to optimally place a deep brain lead, particularly for stimulating the GPi or other deep brain target to treat neurological disorders such as Parkinson's Disease and the like. The invention embraces determining the location of a feedback target such as the motor cortex, the location of the deep brain target, and inserting a test lead along a substantially linear trajectory so as to be able to stimulate both concurrently. The test lead has an electrode at about its distal end for stimulation of the deep brain target, and an electrode adjustably positioned 3-8 cm proximal for stimulation of the motor cortex. When stimulation is applied concurrently through both electrodes, the affected body portion, e.g., limb, can be made to move when and if the deep brain electrode is optimally positioned. The position can be checked during surgical implant of the system, and the lead position adjusted until the optimum position is found.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: June 26, 2001
    Assignee: Medtronic Inc.
    Inventor: Frans L. H. Gielen
  • Patent number: 6247474
    Abstract: Methods and apparatus for communication of implantable medical device (IMD) information, including confirmation of programming and programmed parameter values, operating modes and programmed changes thereof and data stored in the IMD, by emission of audible sounds by the IMD are disclosed. The IMD includes an audio transducer that emits audible sounds including voiced statements or musical tones stored in analog memory correlated to a programming or interrogation operating algorithm or to a warning trigger event. The audible sounds can comprise the sole uplink transmission or may augment the contemporaneous uplink RF transmission of stored data, and/or programmed operating modes and parameters and/or device operations and states in an interrogation or during programming. To conserve energy, the audible sounds accompanying interrogation and programming of the IMD are at a low volume that preferably cannot be heard without use of an external audio amplifier or stethoscope.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: June 19, 2001
    Assignee: Medtronic, Inc.
    Inventors: Daniel R. Greeninger, David L. Thompson, Jerome T. Hartlaub
  • Patent number: 6249702
    Abstract: There is provided a system and method for determining, in a DDD or DDD(R) pacing system, when a delivered atrial pace pulse has failed to capture the patient's atrium. Each cycle, following a delivered ventricular pace pulse, or every N cycles a measure of change in QT interval is obtained and compared to stored criteria. When an atrial pulse has achieved capture, the difference in QT from the last beat will be small, normally less than 2 ms. However, if there has not been atrial capture, the delivered ventricular pace pulse is in fact asynchronous with respect to the atrium, and under these circumstances the change in QT is greater than 2 ms, e.g., in the range of 2-10 ms. Accordingly, when the pacemaker sees a change in QT within the 2-10 ms range, this indicates failure of capture, and responsive action is taken by either directly incrementing the energy level of the atrial pace pulses, or performing an atrial threshold search and then resetting the atrial pace energy level.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: June 19, 2001
    Assignee: Medtronic Inc.
    Inventor: Geeske Van Oort
  • Patent number: 6238423
    Abstract: An anticonstipation apparatus, and method, that may include using an implanted stimulus generator that may supply electrical stimuli to the muscles associated with a target portion of the patient's gut, from the esophagus to the anus, through an electrical lead and several pairs of electrodes. The electrical stimuli may be provided to nerves in the autonomic nervous system that are associated with the muscles, or the stimuli may be provided directly to the muscles themselves. The stimuli may be provided sequentially, in a proximal to caudad direction, in order to initiate, enhance or artificially produce peristalsis in the gut's target portion in a proximal to caudad direction. If the gut's target portion is in the descending colon, such stimulation may be coordinated with similar stimulation of the muscles associated with the rectum and anus. A sensor may be provided to detect when the target portion is experiencing constipation.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: May 29, 2001
    Assignee: Medtronic, Inc.
    Inventor: Gust H. Bardy
  • Patent number: 6238420
    Abstract: A pacing system and method for providing multiple chamber pacing of a patient's heart, and in particular, pacing programmed for treatment of various forms of heart failure. The system utilizes impedance sensing for determining optimum pacing parameters, e.g., for pacing the left ventricle so that left heart output is maximized. The impedance sensing also is used for determination of arrhythmias or progression of heart failure. Impedance sensing is provided for between selected pairs of the four chambers, to enable optimizing of information for control and diagnosis. In a preferred embodiment of the invention, impedance measurements are obtained for determining the timing of right heart valve closure or right ventricular contractions, and the timing of delivery of left ventricular pace pulses is adjusted so as to optimally synchronize left ventricular pacing with the right ventricular contractions.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: May 29, 2001
    Assignee: Medtronic Inc.
    Inventors: Arnoldus Bakels, Robert Leinders, Cobus de Roos