Patents Represented by Attorney Thomas R. Berthold
  • Patent number: 7957107
    Abstract: A current-perpendicular-to-the-plane (CPP) magnetoresistive sensor has an antiparallel free (APF) structure as the free layer and a specific direction for the applied bias or sense current. The (APF) structure has a first free ferromagnetic (FL1), a second free ferromagnetic layer (FL2), and an antiparallel (AP) coupling (APC) layer that couples FL1 and FL2 together antiferromagnetically with the result that FL1 and FL2 have substantially antiparallel magnetization directions and rotate together in the presence of a magnetic field. The thickness of FL1 is preferably greater than the spin-diffusion length of the electrons in the FL1 material. The minimum thickness for FL2 is a thickness resulting in a FL2 magnetic moment equivalent to at least 10 ? Ni80Fe20 and preferably to at least 15 ? Ni80Fe20.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: June 7, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Matthew J. Carey, Jeffrey R. Childress, Stefan Maat, Neil Smith
  • Patent number: 7952831
    Abstract: A perpendicular magnetic recording write head has a write pole, a trapezoidal-shaped trailing shield notch, and a gap between the write pole and notch, with the gap being formed of a nonmagnetic mask film, such as alumina, a nonmagnetic metal protective film and a nonmagnetic gap layer. The write pole has a trailing edge that has a width substantially defining the track width and that faces the front edge of the notch but is spaced from it by the gap. The write pole has nonmagnetic filler material, such as alumina, surrounding it except at its trailing edge, where it is in contact with the gap. A reactive ion beam etching (RIBE) process removes the filler material at the side edges of the write pole and thus widens the opening at the side edges. The nonmagnetic metal film protects the underlying mask film and write pole during the widening of the opening.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: May 31, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: John I. Kim, Aron Pentek
  • Patent number: 7920358
    Abstract: A perpendicular magnetic recording write head that may be used in magnetic recording disk drives has a magnetic write pole (WP) with an end that is generally the same width as the width of the data tracks on the disk. A trailing shield (TS) is spaced from the WP in the along-the-track direction, a pair of side shields are located on opposite sides of the WP in the cross-track direction, and an optional leading shield (LS) is located on the opposite side of the WP from the TS in the along-the-track direction. The TS, side shields and LS are formed of magnetically permeable soft ferromagnetic material and are separated from each other by nonmagnetic separation layers. The TS, side shields and LS each has a throat height (TH) thickness in its region facing the WP. The throat heights for the shields may be different.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: April 5, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Ming Jiang, Changqing Shi
  • Patent number: 7916869
    Abstract: A system and method allows a user to automatically configure a new device on a local area network (LAN) by pressing a sequence of buttons on a conventional remote control (RC) while pointing the infrared (IR) transmitter of the RC at the new device. The button-sequence includes an arbitrary button-sequence selected by the user, or a pre-established button-sequence stored in an existing network member device, such as the network controller, and displayed to the user. The button-sequence represents a cipher key for an encryption/decryption algorithm. The network member device uses the cipher key to encrypt a configuration message that includes a shared network security key and transmit it over the network. The encrypted configuration message is received by the new device and decrypted using the same cipher key.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: March 29, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Shugong Xu, Richard T. Bennett
  • Patent number: 7911728
    Abstract: A servowriting method for a patterned-media magnetic recording disk uses a special position error signal (PES) alignment pattern located in each servo sector. A gross feedforward correction signal to compensate for gross eccentricity of the disk relative to the center of rotation of the servowriter spindle is applied to the actuator. With the gross feedforward correction applied to the actuator the read head generally follows a data track centerline and will detect signals from PES alignment fields as each servo sector passes the read head. This results in a readback signal at each servo sector that represents the fractional track-width radial offset of the read head in that servo sector from a data track centerline. The set of radial offsets for all of the servo sectors is used to modify or fine tune the gross feedforward correction signal that is applied during the servowrite process.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas R. Albrecht, Zvonimir Z. Bandic
  • Patent number: 7889456
    Abstract: A perpendicular magnetic recording write head having a flux shaping layer located on the write pole which has an end located substantially at the surface of the head carrier that faces the recording medium. The write head includes a main pole, on which the write pole is formed, that has an end recessed from the write pole end, and at least one flux return pole. In one implementation a first flux shaping layer is located between the main pole and the write pole. A second flux shaping layer may be located on the write pole with both shaping layers having an end recessed from the write pole end. The first and second flux shaping layers may also be tapered in the direction of the recording medium and cover the sides of the write pole in the cross-track direction to substantially surrounded the write pole with flux shaping material.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: February 15, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Ming Jiang, Changqing Shi
  • Patent number: 7880990
    Abstract: Patterned-media magnetic recording disks are made from a master template that has nondata regions that contain a pattern of one or more discrete nondata islands and discrete gaps, with the pattern representing a scrambled number. All disks made from the master template, or from replica molds made from the master, will have the same patterns. When the disks are DC-magnetized so that all the nondata islands are magnetized in the same direction, these patterns will include one or more of discrete magnetized nondata islands and discrete nonmagnetic gaps that are scrambled in a pseudo-random manner. During operation of the disk drive the patterns are detected by the read head and interpreted within the disk drive using knowledge of the pseudo-random scrambling function, so that reading and writing of data can occur in the conventional manner. If the disks are copied in an attempt to replicate the master template, the resulting disks will be inoperable in a disk drive because of the scrambling.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: February 1, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Jorge Campello de Souza, Cyril Guyot, Bruce Alexander Wilson
  • Patent number: 7862912
    Abstract: A perpendicular magnetic recording medium, usable for either continuous or patterned media, has a recording layer structure (RLS) of first and second perpendicular magnetic layers (PM1, PM2) and an antiferromagnetically coupling (AFC) layer and a ferromagnetic switching layer (SWL) between PM1 and PM2. The magnetic recording system uses heat to assist in the reading and/or writing of data. The SWL is a Co/Ni multilayer with a Curie temperature (TC-SWL) less than the Curie temperatures of PM1 and PM2. At room temperature, there is ferromagnetic coupling between SWL and the upper ferromagnetic layer (PM2) so that the magnetizations of SWL and PM2 are parallel, and antiferromagnetic coupling between SWL and the lower ferromagnetic layer (PM1) across the AFC layer so that the magnetization of PM1 is aligned antiparallel to the magnetizations of SWL and PM2.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: January 4, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Olav Hellwig, Bruce David Terris, Jan-Ulrich Thiele
  • Patent number: 7859998
    Abstract: A system and method manages Quality-of-Service (QoS) in a network by allocating resources, such as available network bandwidth. The network devices transmit and receive data traffic streams, each of which includes QoS parameters, including a priority level and bandwidth allocation. The method includes choosing which existing QoS allocations are pre-empted, notifying original requesters of pre-empted allocations, and re-establishing pre-empted allocations with appropriate modifications. If a new QoS request cannot be accommodated due to the previous allocations to lower-priority requesters, the existing lower-priority allocations are released until enough allocations are released to accommodate the new request. Once the new request is allocated, the pre-empted configurations may be reallocated.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: December 28, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Steven A. Wade, Jr., Junsei Sato
  • Patent number: 7852587
    Abstract: A patterned-media magnetic recording disk drive uses an optical system for accurately clocking the write data. The disk has concentric data tracks patterned into discrete magnetizable data islands with nonmagnetic spaces between the islands. As the disk rotates, a radiation source directs near-field radiation to the islands and spaces, and a radiation detector receives reflected radiation. The radiation is directed from the source through an optical channel or waveguide on the air-bearing slider that supports the read and write heads. The optical channel or waveguide has a near-field transducer at the disk-facing surface of the slider where the near-field radiation exits and reflected radiation returns. The reflected optical power varies depending on whether the near-field transducer couples to an island or a space, so the radiation detector output signal represents the frequency and phase of the islands as the disk rotates.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: December 14, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas R Albrecht, Manfred Ernst Schabes, Barry Cushing Stipe, Gabriel Zeltzer
  • Patent number: 7846563
    Abstract: A perpendicular magnetic recording system and medium has a multilayered recording layer that includes an exchange-spring structure and a ferromagnetic lateral coupling layer (LCL). The exchange-spring structure is made up of two ferromagnetically exchange-coupled magnetic layers (MAG1 and MAG2), each with perpendicular magnetic anisotropy. MAG1 and MAG2 may have a coupling layer (CL) located between them that permits ferromagnetic exchange coupling of MAG1 with MAG2. The LCL is located either above or below MAG1 and in direct contact with MAG1 and mediates an effective intergranular exchange coupling in MAG1. The ferromagnetic alloy in the LCL has significantly greater intergranular exchange coupling than the ferromagnetic alloy in MAG1, which typically will include segregants such as oxides. The LCL is preferably free of oxides or other non-metallic segregants, which would tend to reduce intergranular exchange coupling in the LCL.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: December 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andreas Klaus Berger, Eric E. Fullerton, Byron Hassberg Lengsfield, III, David Thomas Margulies
  • Patent number: 7848047
    Abstract: A patterned-media magnetic recording disk drive compensates for circumferential misalignment of data island patterns among the data tracks as a result of errors in fabrication of the master template used to make the disks. Each data track on the disk has its pattern shifted from a generally radial or arcuate line by a certain amount of pattern circumferential misalignment (PCM). The disk drive includes a write clock where writing to the data islands is controlled by detection of synchronization marks by the read head, and circuitry to adjust the phase of the write clock to compensate for PCM. The phase difference between the data pattern of the selected data track where data is to be written and the data pattern of the track where the synchronization marks are being detected is the difference in their respective PCM values.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: December 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Thomas R. Albrecht
  • Patent number: 7848039
    Abstract: A magnetic recording disk drive uses a disk having pre-patterned servo sectors extending generally radially across the data tracks. The servo sectors include at least two position error signal (PES) bursts or fields. The phases of the PES fields in the servo readback signal are demodulated to generate a PES to control the disk drive actuator for positioning the read/write heads. Each field contains generally radially directed magnetized stripes, with each stripe comprising a plurality of islands forming a zigzag pattern. The stripes have alternating polarity of magnetizations in the along-the-track direction.
    Type: Grant
    Filed: August 11, 2007
    Date of Patent: December 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Michael A. Moser, Satoshi Yamamoto
  • Patent number: 7848048
    Abstract: A patterned-media magnetic recording disk drive has compensation for write head track misregistration (TMR) from the track centerline. As the disk rotates, the read head detects angularly spaced servo sectors and generates a position error signal (PES) which is used by the servo control system to maintain the read head on track. As the disk rotates, the read head also detects angularly spaced synchronization marks, which are used to control the write clock so that magnetization reversal of the magnetic write field from the write head is synchronized with the position of the data islands. If there is TMR of the write head, there will be an effective shift of ?? in the timing of when the center of the data islands pass through the write field. The disk drive includes write clock phase adjustment circuitry that correlates the PES with ?? to compensate for TMR of the write head.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: December 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas R Albrecht, Manfred Ernst Schabes
  • Patent number: 7846565
    Abstract: A magnetic recording disk drive has a patterned perpendicular magnetic recording disk of the type that has spaced-apart pillars with magnetic material on their ends and with trenches between the pillars that are nonmagnetic regions. A nonmagnetic capping layer is located in the trenches above the nonmagnetic regions. The substrate has diffusion material in the trenches that when heated will diffuse into the magnetic recording layer material and chemically react with it. The pillars are formed of material that will not diffuse into the recording layer. The recording layer is formed over the entire substrate and a nonmagnetic capping layer that is not chemically reactive with the diffusion material is formed over the recording layer in the trenches. The substrate is annealed to cause the recording layer material in the trenches and the material in the substrate to diffuse into one another and chemically react to render the trenches nonmagnetic.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: December 7, 2010
    Assignee: Hitachi Golbal Storage Technologies Netherlands B.V.
    Inventors: Eric E. Fullerton, Olav Hellwig
  • Patent number: 7848040
    Abstract: A magnetic recording disk drive has a disk with pre-patterned nondata servo sectors extending generally radially across the data tracks for use in positioning the read/write heads on the data tracks. The servo sectors include a synchronization pattern of generally radially directed magnetized marks, a first field of generally radially directed magnetized stripes, and a second field of generally radially directed magnetized stripes. Each stripe in each of the two fields comprises a plurality of radially spaced discrete islands, each island having a radial height of approximately Tp, where Tp is the spacing of the track centerlines in the radial direction. In the first field, the islands are centered at a track centerline, and in the second field the islands are centered at the midline between two adjacent track centerlines. The marks and islands are discrete magnetized regions separated by nonmagnetic spaces.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: December 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Satoshi Yamamoto
  • Patent number: 7826182
    Abstract: A current-perpendicular-to-the-plane spin-valve (CPP-SV) magnetoresistive sensor has a ferromagnetic alloy comprising Co, Fe and Ge in the sensor's free layer and/or pinned layer. The sensor may be a simple pinned structure, in which case the pinned layer may be formed of the CoFeGe ferromagnetic alloy. Alternatively, the sensor may have an AP-pinned layer structure, in which case the AP2 layer may be formed of the CoFeGe ferromagnetic alloy. The Ge-containing alloy comprises Co, Fe and Ge, wherein Ge is present in the alloy in an amount between about 20 and 40 atomic percent, and wherein the ratio of Co to Fe in the alloy is between about 0.8 and 1.2. More particularly, the CoFeGe alloy may consist essentially of only Co, Fe and Ge according to the formula (CoxFe(100-x))(100-y)Gey where the subscripts represent atomic percent, x is between about 45 and 55, and y is between about 23 and 37.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: November 2, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Matthew J. Carey, Jeffrey R. Childress, Stefan Maat
  • Patent number: 7816994
    Abstract: A microwave circulator uses a thin-film exchange-coupled structure to provide an in-plane magnetic field around the circulator. The exchange-coupled structure is a ferromagnetic layer having an in-plane magnetization oriented generally around the circulator and an antiferromagnetic layer exchange-coupled with the ferromagnetic layer that provides an exchange-bias field to the ferromagnetic layer. A plurality of electrically conductive ports are connected to the exchange-coupled structure. Each of the portions or legs of the circulator between the ports may have an electrical coil wrapped around it with each coil connected to an electrical current source. The ferromagnetic resonance (FMR) frequency of the exchange-coupled structure in the absence of an external magnetic field is determined by the properties of the material of ferromagnetic layer and the magnitude of the exchange-bias field due to the exchange-coupling of the ferromagnetic layer to the antiferromagnetic layer.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: October 19, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Stefan Maat
  • Patent number: 7808882
    Abstract: A method and system optimizes the transmission of a downlink reference signal (DLRS) in a wireless communication system that uses orthogonal division multiple access (OFDMA) for the downlink. Each Node-B (base station) is capable of transmitting the DLRS reference symbols in different subframes of the OFDM radio frame and changing both the number and location of the subframes in response to changing network conditions. The network conditions include the number of terminals being served by the Node-B and multiple access interference (MAI) from adjacent Node-Bs.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: October 5, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Kimihiko Imamura
  • Patent number: 7796353
    Abstract: A patterned-media magnetic recording disk drive uses an optical system for clocking the write data and a patterned-media disk that has discrete magnetizable data islands with nonmagnetic spaces between the islands, wherein the nonmagnetic spaces contain optical contrast material. The optical contrast material may be optically absorptive material, fluorescent material, or a metal layer that generates surface plasmons when excited by radiation of a specific wavelength. Radiation from a primary radiation source is directed to a near-field transducer maintained near the disk surface and a radiation detector detects radiation reflected back from the transducer. If the disk has fluorescent material or a metal layer in the nonmagnetic spaces, then a secondary radiation source irradiates the fluorescent material or metal layer with radiation of a specific wavelength to cause the fluorescent material to emit radiation or the metal layer to generate surface plasmons.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: September 14, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Manfred Ernst Schabes, Barry Cushing Stipe, Gabriel Zeltzer