Patents Represented by Attorney Timothy G. Hofmeyer
  • Patent number: 6886764
    Abstract: A device and process for pulverizing solid materials is provided, which generates vertical and horizontal motion of grinding beads in multiple tube samples containing a sample to be pulverized.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: May 3, 2005
    Assignee: Icoria, Inc.
    Inventors: William Mashburn, Lisa DeVane, Frederick Jaeger, Norman Glassbrook
  • Patent number: 6819787
    Abstract: A physics based model of the absorption of light by histological stains used to measure the amount of one or more stains at locations within tissue is disclosed. The subsequent analysis results in several improvements in the detection of tissue on a slide, improvements to autofocus algorithms so focusing during image acquisition is confined to tissue, improvements to image segmentation and identification of tissued and its features, improvements to the identification of stain where multiple stains are used, and improvements to the quantification of the extent of staining. The invention relates to the application of these improvements to stain detection and quantification to provide for objective comparison between tissues and closer correlation between the presentations of such features and concurrent patterns of gene or protein expression.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: November 16, 2004
    Assignee: Icoria, Inc.
    Inventors: Ronald Stone, Othman Abdulkarim, Michael Fuhrman
  • Patent number: 6806060
    Abstract: The present inventors have discovered that Threonine synthase is essential for fungal pathogenicity. Specifically, the inhibition of Threonine synthase gene expression in fungi results in no signs of successful infection or lesions. Thus, Threonine synthase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit Threonine synthase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: October 19, 2004
    Assignee: Icoria, Inc.
    Inventors: Maria Victoria Montenegro-Chamorro, Sheryl Frank, Blaise Darveaux, Sanjoy Mahanty, Ryan Heiniger, Amy Skalchunes, Huaqin Pan, Rex Tarpey, Jeffrey Shuster, Matthew M. Tanzer, Lisbeth Hamer, Kiichi Adachi, Todd DeZwaan, Sze-Chung Lo
  • Patent number: 6800459
    Abstract: The present inventors have discovered that chorismate mutase and chorismate synthase are essential for plant growth. Specifically, the inhibition of chorismate mutase or chorismate synthase gene expression in plant seedlings results in severe chlorosis, reduced growth and developmental abnormalities. The inventors have proven that chorismate synthase and chorismate mutase can be used as targets for the identification of herbicides. Thus, the invention provides methods for the identification of chemicals that modulate chorismate synthase and chorismate mutase biochemical reactions. The methods of the invention are useful for the identification of herbicides and for the inhibition of plant growth and development.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: October 5, 2004
    Assignee: Paradigm Genetics, Inc.
    Inventors: Douglas C. Boyes, Keith R. Davis, Jeffrey P. Woessner, Jörn Görlach, Carol M. Hamilton, Neil E. Hoffman, Andreas S. Klöti, Adel Zayed, Robert A. Ascenzi
  • Patent number: 6770452
    Abstract: The present inventors have discovered that serine acetyltransferase (SAT) is essential for plant growth. Specifically, the inhibition of SAT gene expression in plant seedlings results in reduced growth and altered pigmentation. Thus, SAT is useful as a target for the identification of herbicides. Accordingly, the present invention provides methods for the identification of herbicides by measuring the activity of an SAT in the presence and absence of a compound, wherein an alteration of SAT activity in the presence of the compound indicates the compound as a candidate for a herbicide.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: August 3, 2004
    Assignee: Paradigm Genetics, Inc.
    Inventors: John W Rice, Lining Guo, Keith Davis, Adel Zayed, Robert Ascenzi, Joseph Cameron Mitchell, Daniel N Riggsbee, Douglas Boyes, Rao Mulpuri, Neil Hoffman, Susanne Kjemtrup, Carol Hamilton, Jeffrey Woessner, Jorn Gorlach
  • Patent number: 6740498
    Abstract: The present inventors have discovered that histidinol-phosphatase is essential for fungal pathogenicity. Specifically, the inhibition of histidinol-phosphatase gene expression in fungi results in small, non-sporulating lesions and reduced pathogenicity. Thus, histidinol-phosphatase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit histidinol-phosphatase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: May 25, 2004
    Assignee: Paradigm Genetics, Inc.
    Inventors: Kiichi Adachi, Todd DeZwaan, Sze-Chung Lo, Maria Victoria Montenegro-Chamorro, Sheryl Frank, Blaise Darveaux, Sanjoy Mahanty, Ryan Heiniger, Amy Skalchunes, Huaqin Pan, Rex Tarpey, Jeffrey Shuster, Matthew M. Tanzer, Lisbeth Hamer
  • Patent number: 6733963
    Abstract: The present inventors have discovered that 3-Isopropylmalate dehydratase is essential for fungal pathogenicity. Specifically, the inhibition of 3-Isopropylmalate dehydratase gene expression in fungi results in no signs of successful infection or lesions. Thus, 3-Isopropylmalate dehydratase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit 3-Isopropylmalate dehydratase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: May 11, 2004
    Assignee: Paradigm Genetics, Inc.
    Inventors: Lisbeth Hamer, Kiichi Adachi, Todd DeZwaan, Sze-Chung Lo, Maria Victoria Montenegro-Chamorro, Sheryl Frank, Blaise Darveaux, Sanjoy Mahanty, Ryan Heiniger, Amy Skalchunes, Huaqin Pan, Rex Tarpey, Jeffrey Shuster, Matthew M. Tanzer
  • Patent number: 6723529
    Abstract: The present inventors have discovered that &agr;-Aminoadipate Reductase is essential for fungal pathogenicity. Specifically, the inhibition of &agr;-Aminoadipate Reductase gene expression in fungi results in no signs of successful infection or lesions. Thus, &agr;-Aminoadipate Reductase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit &agr;-Aminoadipate Reductase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: April 20, 2004
    Assignee: Paradigm Genetics, Inc.
    Inventors: Matthew M. Tanzer, Jeffrey Shuster, Lisbeth Hamer, Kiichi Adachi, Todd M. DeZwaan, Sze-Chung Lo, Maria Victoria Montenegro-Chamorro, Sheryl Frank, Blaise Darveaux, Sanjoy K. Mahanty, Ryan Heiniger, Amy Skalchunes, Huaqin Pan, Rex Tarpey
  • Patent number: 6703200
    Abstract: The present invention relates to a method for facilitating site directed homologous recombination in an organism to produce mutants comprising: 1) providing a large insert vector library comprising one or more large insert vectors, each of said large insert vectors comprising a piece of DNA, said DNA piece comprising multiple genes from a target organism and a first selectable marker functional for selection in bacteria; 2) providing a second vector comprising a transposable element, said transposable element comprising a nucleotide sequence coding for a second selectable marker flanked on each side by an inverted repeat sequence, wherein said selectable marker is bifunctional for selection in bacteria and the target organism and wherein said inverted repeat sequences are functional as a binding site for a transposase; 3) incubating said library with said second vector in the presence of a transposase specific for the inverted repeat sequences on the plasmid vector, such that the transposable element is tr
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: March 9, 2004
    Assignee: Paradigm Genetics, Inc.
    Inventors: John E. Hamer, Lisbeth Hamer
  • Patent number: 6696621
    Abstract: Novel protein useful as a selectable marker resistant to the antibiotic nourseothricin and corresponding polynucleotides for insertion of genes and other genetic material into a variety of organisms, including plants are described.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: February 24, 2004
    Assignee: Paradigm Genetics, Inc.
    Inventors: Andreas S. Kloti, Keith R. Davis
  • Patent number: 6689578
    Abstract: The present inventors have discovered that 5-Aminolevulinate synthase is essential for fungal pathogenicity. Specifically, the inhibition of 5-Aminolevulinate synthase gene expression in fungi results in no signs of successful infection or lesions. Thus, 5-Aminolevulinate synthase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit 5-Aminolevulinate synthase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: February 10, 2004
    Assignee: Paradigm Genetics, Inc.
    Inventors: Todd DeZwaan, Sze-Chung Lo, Maria Victoria Montenegro-Chamarro, Sheryl Frank, Blaise Darveaux, Sanjoy K. Mahanty, Ryan Heiniger, Amy Skalchunes, Huaqin Pan, Rex Tarpey, Jeffrey Shuster, Matthew M. Tanzer, Lisbeth Hamer, Kiichi Adachi
  • Patent number: 6660519
    Abstract: The present invention relates to a highly effective method, apparatus and kit for growing and plating out cultures of microorganisms or cell culture, especially derived from culture blocks containing multiple wells, such as a 96-well or 384-well plate or block.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: December 9, 2003
    Assignee: Paradigm Genetics, Inc.
    Inventor: Carol Hamilton
  • Patent number: 6632631
    Abstract: The present inventors have discovered that homocitrate synthase is essential for fungal pathogenicity. Specifically, the inhibition of homocitrate synthase gene expression in fungi results in no signs of successful infection or lesions. Thus, homocitrate synthase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit homocitrate synthase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: October 14, 2003
    Assignee: Paradigm Genetics, Inc.
    Inventors: Jeffrey Shuster, Matthew M. Tanzer, Lisbeth Hamer, Kiichi Adachi, Todd M. DeZwaan, Sze-Chung Lo, Maria Victoria Montenegro-Chamorro, Blaise Darveaux, Sheryl Frank, Ryan Heiniger, Sanjoy K. Mahanty, Huaqin Pan, Amy Skalchunes, Rex W. Tarpey
  • Patent number: 6617494
    Abstract: Morphological markers are used in a method of visually identifying plants transformed with a nucleotide sequence (e.g., a heterologous gene). The nucleotide sequence is transformed into a plant that exhibits an abnormal phenotype for a morphological marker. If the transformation of the plant is successful, the progeny of the transformed plant will exhibit a normal phenotype. In a preferred embodiment, the plant is Arabidopsis and the morphological marker is Gl1, which is associated with trichome production on plant leaves. The method is also useful for identifying plants that are homozygous for the transformed gene, and for identifying transformants in the T2 generation that are true crosses, rather than self-crosses.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: September 9, 2003
    Assignee: Paradigm Genetics, Inc.
    Inventors: Douglas C. Boyes, Carol M Hamilton, Andreas Kloti, Jorn Gorlach, Neil Hoffman
  • Patent number: 6605459
    Abstract: Assays, preferably high throughput assays, for determining cysteine concentration, cysteine synthase activity, and identifying herbicides, fungicides, bactericides, and insecticides. Cysteine concentration is quantitated by contacting cysteine with a coumarin dye capable of conjugating with cysteine but not to O-acetyl serine or sulfide; exciting the conjugate with UV light; and detecting fluorescent light emitted by the conjugate. Cysteine synthase activity is determined by combining O-acetyl-L-serine, sulfide and cysteine synthase to form a reaction mixture under conditions suitable for cysteine production; contacting the reaction mixture with an appropriate coumarin dye; subjecting the reaction mixture to UV light; and detecting fluorescent light emission.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: August 12, 2003
    Assignee: Paradigm Genetics, Inc.
    Inventors: John Rice, Beth Lanning, John Crawford, Gordon Nye
  • Patent number: 6582900
    Abstract: The present inventors have discovered that Mg-chelatase is essential for the growth of Arabidopsis. Specifically, the inhibition of Mg-chelatase CHL H gene expression in Arabidopsis seedlings results in varying levels of chlorosis (yellowing), significantly reduced growth and developmental abnormalities. Thus, Arabidopsis Mg-chelatase can be used as a target for the identification of herbicides. Accordingly, the present invention provides methods for the identification of compounds that modulate Arabidopsis Mg-chelatase expression or activity, comprising: contacting a compound with a Arabidopsis Mg-chelatase, or a subunit thereof, and detecting the presence and/or absence of binding between said compound and said Mg-chelatase, or detecting a change in Mg-chelatase expression or activity. The methods of the invention are useful for the identification of herbicides and other compounds that can modulate plant growth and development.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: June 24, 2003
    Assignee: Paradigm Genetics, Inc.
    Inventors: Jeffrey P. Woessner, Adel Zayed, Jörn Görlach, Douglas C. Boyes, Keith R. Davis, Carol M. Hamilton, Neil E. Hoffman, Andreas S. Kloti, Robert A. Ascenzi
  • Patent number: 6562624
    Abstract: The present invention relates to methods for facilitating site directed homologous recombination in a eukaryotic organism to produce genomic mutants using transposon mediated mutagenesis of cosmid vectors carrying large genomic inserts from the target eukaryotic organism. The transposon carries a bifunctional marker that can be used for selection in both bacteria and the target eukaryotic organism. Minimization of the length of the cosmid vector allows for maximization of the size of the genomic insert carried by the cosmid. Maximization of the size of the genomic insert increases the frequency of homologous recombination with the genome of the target eukaryotic organism.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: May 13, 2003
    Assignee: Paradigm Genetics, Inc.
    Inventors: Kiichi Adachi, John E. Hamer, Lisbeth Hamer
  • Patent number: 6465217
    Abstract: The present inventors have discovered that chorismate mutase and chorismate synthase are essential for plant growth. Specifically, the inhibition of chorismate mutase or chorismate synthase gene expression in plant seedlings results in severe chlorosis, reduced growth and developmental abnormalities. Thus, in one aspect the invention provides compositions for the modulation of plant growth or development comprising chorismate synthase and chorismate mutase antisense and sense polynucleotides, dsRNA and ribozymes, and related expression cassettes and vectors. The compositions of the invention are particularly useful for the modulation and inhibition of plant growth. The invention further provides plants, plant cells, and seeds containing the polynucleotides of the invention. The inventors have proven that chorismate synthase and chorismate mutase can be used as targets for the identification of herbicides.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: October 15, 2002
    Assignee: Paradigm Genetics, Inc.
    Inventors: Douglas C. Boyes, Keith R. Davis, Jeffrey P. Woessner, Jörn Görlach, Carol M. Hamilton, Neil E. Hoffman, Andreas S. Klöti, Adel Zayed, Robert A. Ascenzi
  • Patent number: 6399352
    Abstract: Novel DNA and enzymes such as Plant Thioredoxin-Porphobilinogen Synthase (T-PPS) or Plant Porphobilinogen Synthase (PPS), together with novel compositions thereof and methods using such enyzmes are claimed.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: June 4, 2002
    Assignee: Paradigm Genetics, Inc.
    Inventors: John Milton Crawford, Jr., John Rice, Veeresh Sevala, Sandy Stewart
  • Patent number: 6297396
    Abstract: A method for synthesizing alkyl gallates. Gallic acid and an alkyl alcohol of the order of the desired gallate are heated in a reaction vessel in the presence of a catalyst such as sulfuric acid or para-toluene sulfonic acid. Water is generated, forming an azeotrope with the alkyl alcohol. Distillation or Soxhlet extraction using a drying agent removes the formed water. Upon completion of the reaction, the reaction mixture is added while stirring to an alkane solvent and cooled to produce crystals of the desired alkyl gallate. The crystals may be further recrystallized and washed to improve their purity.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: October 2, 2001
    Inventors: Benedikt Sas, Bruno Coppens, Johan Van hemel