Patents Represented by Attorney Tom Berry
  • Patent number: 7094235
    Abstract: A method for ablation in which a portion of atrial tissue around the pulmonary veins of the heart is ablated by a first elongated ablation component and a second elongated ablation component movable relative to the first ablation component and having means for magnetically attracting the first and second components toward one another. The magnetic means draw the first and second components toward one another to compress the atrial tissue therebetween, along the length of the first and second components and thereby position the device for ablation of the tissue.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: August 22, 2006
    Assignee: Medtronic, Inc.
    Inventor: David E. Francischelli
  • Patent number: 7083620
    Abstract: A hemostat-type device for ablative treatment of tissue, particularly for treatment of atrial fibrillation, is constructed with features that provide easy and effective treatment. A swiveling head assembly can allow the jaws to be adjusted in pitch and roll. Malleable jaws can permit curved lesion shapes. A locking detent can secure the jaws in a closed position during the procedure. An illuminated indicator provides confirmation that the device is operating. A fluid delivery system simplifies irrigated ablation procedures.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: August 1, 2006
    Assignee: Medtronic, Inc.
    Inventors: Scott E. Jahns, David E. Francischelli, Alison A. Lutterman, James R. Keogh, Roderick E. Briscoe, William G. O'Neill, Jack Goodman, Tom P. Daigle, Paul T. Rothstein, Adam A. Podbelski, Stephen J Roddy, David J. S. Kim, Mark R. Bilitz
  • Patent number: 7078163
    Abstract: A method of making a tissue-derived implantable medical device that includes contacting the tissue with a composition comprising at least one oxidizing agent prior to implantation of the medical device.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: July 18, 2006
    Assignee: Medtronic, Inc.
    Inventor: Mark W. Torrianni
  • Patent number: 7066882
    Abstract: A system, method and apparatus for regulating vacuum applied to surgical suction devices allowing the use of a single vacuum regulator and associated canister to provide vacuum to two suction devices, such as a suction stabilizer and a suction retractor. Vacuum controllers may be placed in the vacuum lines provided to each of two or more suction devices, or may be placed only in the vacuum line of the suction device believed most likely to detach during the procedure. Each vacuum controller is provided with a primary vacuum line, coupling its associated suction device to the output of the vacuum regulator and a pilot passage, also coupling the suction device to the vacuum regulator. The controller closes a valve in the main vacuum line in response to loss of vacuum attachment, which valve remains closed until attachment is reestablished. Closure of the valve results in substantial or complete blockage of the main vacuum line.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: June 27, 2006
    Assignee: Medtronic, Inc.
    Inventors: Scott E. Jahns, Glen Holmberg
  • Patent number: 7066954
    Abstract: An annuloplasty system including an annuloplasty prosthesis and a holder for the prosthesis.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: June 27, 2006
    Assignee: Medtronic, Inc.
    Inventors: Timothy R Ryan, Joseph C. Morrow
  • Patent number: 7063693
    Abstract: A tubular access sleeve and suction tool for accessing an anatomic surface or anatomic space and particularly the pericardium to access pericardial space and the epicardial surface of the heart in a minimally invasive manner are disclosed. A suction tool trunk extending through a suction tool lumen of the sleeve is coupled to suction pads at the ends elongated support arms. The suction pads can be retracted into a sleeve working lumen during advancement of the access sleeve through a passage and deployed from the tubular access sleeve lumen and disposed against the an outer tissue layer. Suction can be applied through suction tool lumens to suction ports of the suction pads that fix to the outer tissue layer so as to tension the outer tissue layer and/or pull the outer tissue layer away from an inner tissue layer so that the anatomic space can be accessed by instruments introduced through the working lumen to penetrate the outer tissue layer.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: June 20, 2006
    Assignee: Medtronic, Inc.
    Inventor: Gary W. Guenst
  • Patent number: 7048683
    Abstract: A method and apparatus for temporarily immobilizing a local area of tissue. In particular, the present invention provides a method and apparatus for temporarily immobilizing a local area of heart tissue to thereby permit surgery on a coronary vessel in that area without significant deterioration of the pumping function of the beating heart. The local area of heart tissue is immobilized to a degree sufficient to permit minimally invasive or micro-surgery on that area of the heart. The present invention features a suction device to accomplish the immobilization. The suction device is coupled to a source of negative pressure. The suction device has a series of suction ports on one surface. Suction through the device causes suction to be maintained at the ports. The device further is shaped to conform to the surface of the heart. Thus, when the device is placed on the surface of the heart and suction is created, the suction through the ports engages the surface of the heart.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: May 23, 2006
    Assignee: Medtronic, Inc.
    Inventors: Cornelius Borst, Hendricus J. Mansvelt Beck, Paul F. Grundeman, Erik W. L. Jansen
  • Patent number: 7033390
    Abstract: A prosthetic heart valve system including a prosthetic heart valve and a deflection device. The deflection device includes a line and a connector assembly including a tensioning component. The line interconnects and passes through free ends of stent posts associated with the heart valve, and is further connected to the tensioning component. The tensioning component is transitionable to a tensioning state in which the line is tensioned to inwardly deflect the stent posts. In this regard, the tensioning component is self-locking relative to the line in the tensioning state, and an entirety of the line extending distal the tensioning device does not extend beyond a stent portion of the heart valve opposite the stent posts. In a preferred embodiment, a holder body is further included, coupled to the heart valve apart from the deflection device.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: April 25, 2006
    Assignee: Medtronic, Inc.
    Inventors: Keith M. Johnson, Jack D. Lemmon, Joseph C. Morrow, Timothy R. Ryan
  • Patent number: 7029470
    Abstract: A system and method for creating lesions and assessing their completeness or transmurality. Assessment of transmurality of a lesion is accomplished by monitoring the depolarization signal in a local electrogram taken using electrodes located adjacent the tissue to be ablated. Following onset of application of ablation energy to heart tissue, the local electrogram is measured with electrodes located adjacent tissue to be ablated so that the ablation energy to ablation elements can be selectively reduced or terminated when transmurality is detected.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: April 18, 2006
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Eduardo N. Warman, Rahul Mehra, Mark T. Stewart, James R. Skarda, Harry Puryear, David Schwartzman
  • Patent number: 7025773
    Abstract: Methods and devices for placing a conduit in fluid communication with a target vessel and a source of blood, such as the aorta or a heart chamber. The device may be actuated using one hand to place the conduit. The invention allows air in the conduit to be removed prior to placement of the conduit. The invention deploys the conduit in the target vessel by moving a sheath in a distal direction and then in a proximal direction. A conduit is provided with a reinforcing member to prevent kinking of the conduit, and a structure for preventing blockage of the conduit by tissue. A vessel coupling may be used to secure a conduit to a target vessel so as to preserve native blood flow through the vessel, and the conduit may be placed in fluid communication with a target vessel via a laparoscopic or endoscopic procedure.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: April 11, 2006
    Assignee: Medtronic, Inc.
    Inventors: Darin C. Gittings, Alan R. Rapacki, Dean F. Carson, David H. Cole, Keke Lepulu, Adam Sharkawy, Gilbert S. Laroya, Wally S. Buch
  • Patent number: 7022134
    Abstract: The present invention comprises a pulmonary valved conduit that permits inflow diameters greater than about 22 mm while still maintaining the advantages of a naturally-formed biological valved conduit. Specifically, the present invention comprises a valved vascular prosthetic having an inflow conduit comprising a manifold formed from the sealed attachment of at least two venous valvular conduits.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: April 4, 2006
    Assignee: Medtronic, Inc.
    Inventors: Rodolfo C. Quijano, Robert Loya
  • Patent number: 6998093
    Abstract: A fluid oxygenating apparatus is provided which includes a housing defining a chamber, a core positioned within the chamber including a fluid channel formed therein, and a bubble release port communicating with the outlet end of the channel. Fluid is flowed through an inlet of the channel and bubbles are released through the bubble release port. A method and system for debubbling a fluid in such an apparatus is also provided.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: February 14, 2006
    Assignee: Medtronic, Inc.
    Inventors: Kevin D. McIntosh, Bruce R. Jones
  • Patent number: 6982038
    Abstract: A centrifugal method, and corresponding system, for processing blood to collect platelet rich plasma. A separation chamber is filled with blood from a fill syringe by rotating the separation chamber at a fill rotation rate and pumping the blood from the fill syringe. A soft spin is used to initially separate red blood cells from platelets by spinning the separation chamber at a soft spin rate. A percentage of the blood is drawn from the separation chamber back into the fill syringe to remove separated red blood cells. A second portion of the separated blood is drawn from the separation chamber until a red blood cell/platelet interface is detected. A hard spin is performed by spinning the separation chamber at a higher rate and connecting tubing is cleared of red blood cells by drawing a predetermined clearing volume. The platelet rich plasma is then collected in the collection syringe.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: January 3, 2006
    Assignee: Medtronic, Inc.
    Inventors: Victor D. Dolecek, Gary L. Berg, Kenneth E. Merte, David Malcolm, Kevin D. McIntosh, Vitaly G. Sitko
  • Patent number: 6976979
    Abstract: A malleable cannula has a body with a proximal end and a distal end, the body having a wall defining a lumen extending from the proximal end to the distal end. A reinforcement member extends along the lumen, the reinforcement member having an interior side facing the lumen and an exterior side facing away from the lumen. A malleable member extends along a portion of the exterior side of the reinforcement member. The malleable member may be constructed of a tube with a wire slidably received within the tube and may include an anchor.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: December 20, 2005
    Assignee: Medtronic, Inc.
    Inventors: Robert J. Lawrence, Frederick A. Shorey, Donald R. Sandmore
  • Patent number: 6966903
    Abstract: An intravascular balloon occlusion device according to the invention is shown. The device is ideally suited for use in a coronary artery bypass graft procedure. The device includes a body having at least one selectively inflated balloon provided on the distal end thereof. Preferably, the body is a closed end body so that fluid can only flow from the proximal end of the body into the balloon. In use, the distal end of the body and the balloon are inserted into an aperture provided in the aorta. The balloon is inflated and then the device is retracted until the balloon seats against the incision or aperture in the aorta, thereby effectively sealing the aperture from the blood flow through the aorta, but not occluding blood flow through the body of the aorta itself. Next, the graft vessel is telescopically positioned on the occlusion device and mounted to the aorta. Once the vessel is secured thereto, the balloon is deflated and then the occlusion device is retracted from both the aorta and the graft vessel.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: November 22, 2005
    Assignee: Medtronic, Inc.
    Inventors: Kenneth R. Jonkman, Paul F. Rom
  • Patent number: 6962589
    Abstract: A method and apparatus for creating a virtual electrode to ablate bodily tissue. The apparatus includes an outer tube, a first electrode, an inner tube and a second electrode. The outer tube is fluidly connected to a source of conductive fluid and defines a proximal end and a distal end. The distal end includes an opening for delivering conductive fluid from the outer tube. The first electrode is disposed at the distal end of the outer tube for applying a current to conductive fluid delivered from the outer tube. The inner tube is coaxially received within the outer tube and is connected to a source of conductive fluid. The inner tube defines a proximal end and a distal end, with the distal end forming an opening for delivering conductive fluid from the inner tube. Finally, the second electrode is disposed at the distal end of the inner tube for applying a current to conductive fluid delivered from the inner tube.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: November 8, 2005
    Assignee: Medtronic, Inc.
    Inventors: Peter M. J. Mulier, Michael F. Hoey
  • Patent number: 6960205
    Abstract: A suction assisted ablation device having a support surface, suction elements disposed adjacent the support surface, at least one electrode and at least one suction conduit is provided. The device may further include fluid openings, which allow fluid to irrigate target tissue and aid in ablation. A method for ablating tissue using suction is also provided.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: November 1, 2005
    Assignee: Medtronic, Inc.
    Inventors: Scott E. Jahns, Donald N Jensen, David Lipson, Jon M. Ocel, Gregory P. Werness
  • Patent number: 6960209
    Abstract: Methods and apparatus employed in surgery involving making precise incisions in vessels of the body, particularly cardiac blood vessels in coronary revascularization procedures conducted on the stopped or beating heart are disclosed. Such incisions are created by applying an elongated electrosurgical cutting electrode to the outer surface of the vessel wall in substantially parallel alignment with the body vessel axis, the elongated electrosurgical cutting electrode having a predetermined cutting electrode length exceeding the cutting electrode width. RF energy is applied between the electrosurgical cutting electrode and the ground electrode at an energy level and for a duration sufficient to cut an elongated slit through the vessel wall where the elongated electrosurgical cutting electrode is applied to the surface of the vessel wall.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: November 1, 2005
    Assignee: Medtronic, Inc.
    Inventors: Cynthia T. Clague, Philip J. Haarstad, Scott E. Jahns, James R. Keogh, Christopher P. Olig, Raymond W. Usher
  • Patent number: 6960221
    Abstract: A tissue connector assembly comprising a clip movable between an open configuration and a closed configuration and a mechanical restraining device including a plurality of strands releasably attachable to the clip for restraining the clip in its open configuration. A needle may be releasably attached to the clip. A flexible member may also interconnect the clip and the needle.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: November 1, 2005
    Assignee: Medtronic, Inc.
    Inventors: Liem Ho, Isidro Matias Gandionco, Nga T. Doan
  • Patent number: 6960180
    Abstract: An obturator prevents the tips or flaps of a duck-bill valve from self-adhering during storage or during sterilization procedures. The obturator holds the tips apart until the end-user is ready to use the valve. The duck-bill valve is used as an air outlet valve in blood reservoirs.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: November 1, 2005
    Assignee: Medtronic, Inc.
    Inventor: Kevin D. McIntosh