Patents Represented by Attorney, Agent or Law Firm Warren L. Franz
  • Patent number: 8093688
    Abstract: Device comprising an ohmic via contact, and method of fabricating thereof. A preferred embodiment comprises forming a metal layer over a substrate, forming a conductive barrier layer over the metal layer, depositing an insulating layer over the conductive barrier layer, creating an opening in the insulating layer to expose the conductive barrier layer, and forming a via contact in the opening. The conductive barrier layer protects the metal layer by preventing the formation of an oxide layer, which could reduce conductivity.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: January 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: David A. Rothenbury, James D. Huffman
  • Patent number: 8088664
    Abstract: A method of forming an integrated deep and shallow trench isolation structure comprises depositing a hard mask on a film stack having a plurality of layers formed on a substrate such that the hard mask is deposited on a furthermost layer from the substrate, imprinting a first pattern into the hard mask to define an open end of a first trench, imprinting a second pattern into the hard mask to define an open end of a second trench, and etching into the film stack the first trench to a first depth and the second trench to a second depth such that the first trench and the second trench each define a blind aperture in the surface of the film stack.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: January 3, 2012
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Joerg Haussmann, Christoph Dirnecker, Rupert Wagner
  • Patent number: 8058161
    Abstract: A method of manufacturing a semiconductor device having shallow trench isolation includes steps of forming a hard mask layer on the substrate surface, etching a trench through the hard mask, filling the trench with an isolation material, forming a recessed trench, and forming a serpentine gate structure to connect electronic sources and drains.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: November 15, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Gabriel George Barna, Andrew Marshall, Brian K. Kirkpatrick
  • Patent number: 8053324
    Abstract: In one aspect provides a method of manufacturing a semiconductor device having improved transistor performance. In one aspect, this improvement is achieved by conducting a pre-deposition spacer deposition process wherein a temperature of a bottom region of a furnace is higher than a temperature of in the top region and is maintained for a predetermined period. The pre-deposition temperature is changed to a deposition temperature, wherein a temperature of the bottom region is lower than a temperature of the top region.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: November 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Bradley D. Sucher, Christopher S. Whitesell, Joshua J. Hubregsen, James H. Beatty
  • Patent number: 8053322
    Abstract: A method of fabricating an integrated circuit (IC) and ICs therefrom including a plurality of Metal Oxide Semiconductor (MOS) transistors having reduced gate dielectric thinning and corner sharpening at the trench isolation/semiconductor edge for gate dielectric layers generally 500 to 5,000 Angstroms thick. The method includes providing a substrate having a silicon including surface. A plurality of dielectric filled trench isolation regions are formed in the substrate. The silicon including surface forms trench isolation active area edges along its periphery with the trench isolation regions. An epitaxial silicon comprising layer is deposited, wherein the epitaxial comprising silicon layer is formed over the silicon comprising surface.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: November 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Vladimir F. Drobny, Amitava Chatterjee, Phillipp Steinmann, Rick Wise
  • Patent number: 8053296
    Abstract: The present invention provides a semiconductor device, a method of manufacture therefor, and an integrated circuit including the semiconductor device. The semiconductor device, among other elements, includes a recrystallized polysilicon layer 148 located over a gate electrode layer 143, a capacitor 170 located on the recrystallized polysilicon layer 148. The capacitor 170, in this embodiment, includes a first electrode 173, an insulator 175 located over the first electrode 173, and a second electrode 178 located over the insulator 175.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: November 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Haowen Bu, Clint Montgomery
  • Patent number: 8054552
    Abstract: According to one embodiment of the present invention a method for directing light onto a digital micromirror device is disclosed that includes the steps of directing light toward a DMD through a lens that includes a plurality of lens elements such that, absent correction, the directed light is distorted at the DMD; and compensating for the distortion of the directed light at the DMD by predistorting the directed light prior to reaching the DMD by the plurality of lens elements.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: November 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Michael T. Davis, John D. Jackson
  • Patent number: 8051391
    Abstract: Exemplary embodiments provide a method for laying out an integrated circuit (“IC”) design and the IC design layout. In one embodiment, the IC design layout can include a first feature placed on a first intersecting point of a grid. The placed first feature can define a local grid area. The local grid area can further include a plurality of local intersecting points having an outer perimeter spaced from any outermost local intersecting point in a spacing ranging from a length of a grid side to a length of a grid diagonal of a grid unit. A second feature can either be restrictively placed on any local intersecting point of the local grid area, or be randomly placed on any location outside the outer perimeter of the local grid area.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: November 1, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: James Walter Blatchford
  • Patent number: 8049214
    Abstract: A pair of split-gate fin field effect transistors (finFETs) in an IC, each containing a signal gate and a control gate, in which an adjustable voltage source, preferably in the form of a digital-to-analog-converter (DAC), is connected to the control gate of one of the finFETs, is disclosed. Threshold measurement circuits on the signal gates enable a threshold adjustment voltage from the adjustable voltage source to reduce the threshold mismatch between the finFETs. Adding a second DAC to the second finFET allows a simpler DAC design. Threshold correction may be performed during the operational life of the IC. Implementations in a differential input stage of an amplifier and in a current mirror circuit are described.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: November 1, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Andrew Marshall
  • Patent number: 8043947
    Abstract: A method for semiconductor processing provides a DSB semiconductor body having a first crystal orientation, a second crystal orientation, and a border region disposed between the first and second crystal orientations. The border region further has a defect associated with an interface of the first crystal orientation and second the second crystal orientation, wherein the defect generally extends a distance into the semiconductor body from a surface of the body. A sacrificial portion of the semiconductor body is removed from the surface thereof, wherein removing the sacrificial portion at least partially removes the defect. The sacrificial portion can be defined by oxidizing the surface at low temperature, wherein the oxidation at least partially consumes the defect. The sacrificial portion can also be removed by CMP. An STI feature may be further formed over the defect after removal of the sacrificial portion, therein consuming any remaining defect.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: October 25, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Angelo Pinto, Weize Xiong, Manfred Ramin
  • Patent number: 8028709
    Abstract: A cleaning system which can be integrated into a coater track system for use in the production of semiconductor devices and methods for its use are provided. The cleaning system can include a series of nozzles having assorted configurations and features which provide uniform and efficient rinsing of excess material.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: October 4, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Adrian Salinas, Joel Peterson
  • Patent number: 8030155
    Abstract: A method of forming a rectifying diode. The method comprises providing a first semiconductor region of a first conductivity type and having a first dopant concentration and forming a second semiconductor region in the first semiconductor region. The second semiconductor region has the first conductivity type and having a second dopant concentration greater than the first dopant concentration. The method also comprises forming a conductive contact to the first semiconductor region and forming a conductive contact to the second semiconductor region. The rectifying diode comprises a current path, and the path comprises: (i) the conductive contact to the first semiconductor region; (ii) the first semiconductor region; (iii) the second semiconductor region; and (iv) the conductive contact to the second semiconductor region. The second semiconductor region does not extend to a layer buried relative to the first semiconductor region.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: October 4, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Vladimir F. Drobny, Derek W. Robinson
  • Patent number: 8012877
    Abstract: Exemplary embodiments provide a method for fabricating an integrated circuit (IC) device with reduced streak defects. In one embodiment, the IC device structure can be formed having a first pad oxide-based layer on a front side of a semiconductor substrate and having an oxide-nitride-based structure on a backside of the semiconductor substrate. The IC device structure can be etched to remove a nitride-related material from the backside oxide-nitride-based structure, and further to remove the first pad oxide-based layer from the front side of the semiconductor substrate. On the removed front side of the semiconductor substrate a second pad oxide-based layer can be formed, e.g., for forming an isolation structure for device component or circuitry isolation.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: September 6, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Scott Cuong Nguyen
  • Patent number: 8008200
    Abstract: A method of forming a dual damascene structure is disclosed. A lower dielectric hardmask layer and an upper dielectric hardmask layer are deposited on an ultra low-k film. A first via is formed in the upper hardmask layer. Next, a first trench is formed using a tri-layer resist scheme. Finally, a full via and a full trench are formed simultaneously. An optional etch-stop layer can be used in the ultra low-k layer to control trench depth.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: August 30, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Ping Jiang, William W. Dostalik, Yong Seok Choi
  • Patent number: 8008216
    Abstract: Metal Oxide Semiconductor (MOS) transistors fabricated using current art may utilize a nitridation process on the gate dielectric to improve transistor reliability. Nitridation by the current art, which involves exposing the gate dielectric to a nitridation source, produces a significant concentration of nitrogen at the interface of the gate dielectric and the transistor substrate, which adversely affects transistor performance. This invention comprises the process of depositing a sacrificial layer on the gate dielectric prior to nitridation, exposing the sacrificial layer to a nitridation source, during which time nitrogen atoms diffuse through the sacrificial layer into the gate dielectric, then removing the sacrificial layer without degrading the gate dielectric. Work associated with this invention on high-k gate dielectrics has demonstrated a 20 percent reduction in nitrogen concentration at the gate dielectric—transistor substrate interface.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: August 30, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Husam Alshareef, Manuel Quevedo Lopez
  • Patent number: 8002611
    Abstract: A chemical mechanical polishing pad and method for chemical-mechanical polishing is provided, wherein the polishing pad has a plurality of first mesas and one or more second mesas defined on a surface thereof. The plurality of first mesas are generally distributed about the surface of the polishing pad, wherein each of the plurality of first mesas has a first surface area associated therewith. The one or more second mesas are associated with a center region of the polishing pad, wherein each of the one or more second mesas has a second surface area associated therewith. The second surface area is at least twice the first surface area.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: August 23, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Yanghua He, Jingqiu Chen, Yaojian Leng
  • Patent number: 8004051
    Abstract: One embodiment relates to an integrated circuit that includes a lateral trench MOSFET disposed in a semiconductor body. The lateral trench MOSFET includes source and drain regions having a body region therebetween. A gate electrode region is disposed in a trench that extends beneath the surface of the semiconductor body at least partially between the source and drain. A gate dielectric separates the gate electrode region from the semiconductor body. In addition, a field plate region in the trench is coupled to the gate electrode region, and a field plate dielectric separates the field plate region from the semiconductor body. Other integrated circuits and methods are also disclosed.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: August 23, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Marie Denison
  • Patent number: 7999293
    Abstract: The invention provides a semiconductor device manufactured with a plurality of photodiodes so that it does not short circuit, and includes an opening without leakage. A second semiconductor layer (12, 16) of second conductivity type is formed on a main surface of a first semiconductor layer (10, 11) of the first conductivity type. Element-separating regions (13, 14, 15, 17) are formed at least on the second semiconductor layer to separate the device into the regions of photodiodes (PD1-PD4). A conductive layer (18) is formed on the second semiconductor layer 16 in a divided pattern that provides a segment for each photodiode and is connected to the second semiconductor layer (16) along the an outer periphery with respect to all photodiodes. An insulation layer (19, 21) is formed on the entire surface to cover conductive layer (18). An opening, which reaches the second semiconductor layer (16), is formed in the insulation layer (19, 21) in the region inside the pattern of conductive layer (18).
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 16, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Yohichi Okumura, Hiroyuki Tomomatsu
  • Patent number: 7998865
    Abstract: A system (500) removes wafer edge residue from a target wafer (508). A wafer holding mechanism (502) holds and rotates the target wafer (508). A residue remover mechanism (504) mechanically interacts or abrades an edge surface of the target wafer (508) and removes strongly adhered residue from the edge surface of the target wafer (508). The residue remover mechanism (504) controls coverage of the mechanical interaction and magnitude of the mechanical interaction.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 16, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Joe G. Tran, Brian K. Kirkpatrick, Alfred J. Griffin, Jr.
  • Patent number: 7989232
    Abstract: Embodiments provide a method and device for electrically monitoring trench depths in semiconductor devices. To electrically measure a trench depth, a pinch resistor can be formed in a deep well region on a semiconductor substrate. A trench can then be formed in the pinch resistor. The trench depth can be determined by an electrical test of the pinch resistor. The disclosed method and device can provide statistical data analysis across a wafer and can be implemented in production scribe lanes as a process monitor. The disclosed method can also be useful for determining device performance of LDMOS transistors. The on-state resistance (Rdson) of the LDMOS transistors can be correlated to the electrical measurement of the trench depth.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: August 2, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Qingfeng Wang, Sameer P. Pendharkar, Binghua Hu