Patents Represented by Attorney, Agent or Law Firm William F. Ryann
  • Patent number: 7475666
    Abstract: A stroke control assembly for an engine. The assembly is configured to transfer power from a rectilinear moving piston by way of an interaction between a control plate and a flywheel of the assembly. The control plate is configured to phase shift or overrun the flywheel at predetermined locations of interface between a rectilinear moving piston and the control plate. In this manner, significant forces that might otherwise be applied to the control plate, may be avoided, following these predetermined locations. The control plate may also allow a firm engagement of a mechanical rectifier (one way clutch) while tracking a substantially constant velocity piston device for about 240° of rotation thereof to optimally enhance collection of power from the rectilinear moving piston.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: January 13, 2009
    Inventor: John A. Heimbecker
  • Patent number: 6802983
    Abstract: A method and system for separating impurities, such as large abrasive particles and foreign matter from an abrasive polishing slurry prior to a Chemical Mechanical Polishing (CMP) procedure performed on a surface of a semiconductor wafer. Impurities greater than about 25 microns are removed by an initial filtration process. The filtrate is then introduced to a solid bowl, sedimentation-type centrifuge to remove particles greater than 0.5 microns thereby providing a polishing slurry for final utilization in a CMP procedure that reduces damage to the surface of the polished semiconductor wafer.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: October 12, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William Mullee, Glen Jenkins, Michael Jones
  • Patent number: 6787186
    Abstract: A method of forming a metal oxide ceramic layer is provided, in which a gaseous flow of a vaporized solution of a precursor organo metal compound in a volatile organic solvent, e.g., plus an oxidizing gas, in the presence of a protonating additive substance and/or activating agent in gaseous state, is conducted into contact with a surface of a substrate. The operation is effected under vacuum pressure at a thermal decomposition temperature for converting the precursor compound to its corresponding metal oxide, e.g., having the same oxidation state as in the precursor compound. The additive substance is present in an amount sufficient for facilitating thermal decomposition of the precursor compound and for controlling the in situ oxidation state of the deposited metal and the amount of oxygen in the formed layer, e.g., while suppressing formation of volatile intermediates and of vacancies in the formed layer.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: September 7, 2004
    Assignees: Advanced Technology Materials, Inc., Infineon Technologies Corporation
    Inventor: Frank S. Hintermaier
  • Patent number: 6773873
    Abstract: A semi-aqueous cleaning formulation useful for removing particles from semiconductor wafer substrates formed during a dry etching process for semiconductor devices, the cleaning formulation comprising a buffering system a polar organic solvent, and a fluoride source.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: August 10, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ma. Fatima Seijo, William A. Wojtczak, David Bernhard, Thomas H. Baum, David Minsek
  • Patent number: 6767830
    Abstract: A volatile solid-source novel antimony precursor, Br2SbCH3, that may be utilized in semiconductor processing chambers for depositing antimony on a substrate by deposition methods, e.g., chemical vapor deposition, ion implantation, molecular beam epitaxy, diffusion and rapid thermal processing. The novel antimony compound of the invention is synthesized by combining tribromide antimony with trimethylantimony under heating conditions that form a Br2SbCH3 crystalline product.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: July 27, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Thomas H. Baum, Michael A. Todd, Niamh McMahon
  • Patent number: 6764755
    Abstract: A channelized sorbent material comprises porous sorbent particles characterized by an average pore diameter. Each sorbent particle has at least one interior channel of an average transverse dimension (i.e. transverse diameter) that is at least ten times larger than the average pore diameter of the porous sorbent particle. The interior channel may constitute a single cylindrical through-bore in the sorbent particle, or alternatively, an array of intersecting or non-intersecting channels. The porous sorbent particles preferably comprise bead activated carbon particles. Such channelized sorbent material is particular useful as sorbent media in an adsorption-desorption apparatus for storage and dispensing of a sorbable fluid.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: July 20, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, Steven J. Hultquist
  • Patent number: 6755989
    Abstract: A semiconductor wafer cleaning formulation, including 1-21% wt. fluoride source, 20-55% wt. organic amine(s), 0.5-40% wt. nitrogenous component, e.g., a nitrogen-containing carboxylic acid or an imine, 23-50% wt. water, and 0-21% wt. metal chelating agent(s). The formulations are useful to remove residue from wafers following a resist plasma ashing step, such as inorganic residue from semiconductor wafers containing delicate copper interconnecting structures.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: June 29, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William A. Wojtczak, Ma. Fatima Seijo, David Bernhard, Long Nguyen
  • Patent number: 6740586
    Abstract: A vaporizer delivery system including a sublimatable solid precursor material applied to a wire substrate for vaporizing and achieving a continuous uninterrupted delivery of a vaporized precursor to a downstream semiconductor process chamber. The coated wire substrate is drawn past a heat source at a predetermined speed to rapidly heat and vaporize the sublimatable solid precursor.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: May 25, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Luping Wang, Thomas H. Baum, Chongying Xu
  • Patent number: 6736993
    Abstract: Silicon precursors for forming silicon films. Hexacoordinated silicon beta-diketonate compositions are described, of the formula R2Si(-diketonate)2 or (RO)2Si(&bgr;-diketonate)2, wherein each R is the same as or different from the other R, and each R is independently selected from H, aryl, fluoroaryl, C1-C12 alkyl, C1-C12 fluoroalkyl and C1-C12 silicon-containing alkyl. The precursors are compatible with dopant co-precursors such as transition metal &bgr;-diketonate coordination complexes. The compositions enable low temperature (e.g., <600° C.) formation of gate dielectrics, capacitor films, etc., in the fabrication of VLSI microelectronic devices.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: May 18, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Chongying Xu, Thomas H. Baum, Bryan C. Hendrix
  • Patent number: 6730523
    Abstract: A low temperature CVD process using a tris (&bgr;-diketonate) bismuth precursor for deposition of bismuth ceramic thin films suitable for integration to fabricate ferroelectric memory devices. Films of amorphous SBT can be formed by CVD and then ferroannealed to produce films with Aurivillius phase composition having superior ferroelectric properties suitable for manufacturing high density FRAMs.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: May 4, 2004
    Assignees: Advanced Technology Materials, Inc., Siemens Aktiengesellschaft
    Inventors: Frank S. Hintermaier, Christine Dehm, Wolfgang Hoenlein, Peter C. Van Buskirk, Jeffrey F. Roeder, Bryan C. Hendrix, Thomas H. Baum, Debra A. Desrochers
  • Patent number: 6727531
    Abstract: A gallium nitride-based HEMT device, comprising a channel layer formed of an InGaN alloy. Such device may comprise an AlGaN/InGaN heterostructure, e.g., in a structure including a GaN layer, an InGaN layer over the GaN layer, and a (doped or undoped) AlGaN layer over the InGaN layer. Alternatively, the HEMT device of the invention may be fabricated as a device which does not comprise any aluminum-containing layer, e.g., a GaN/InGaN HEMT device or an InGaN/InGaN HEMT device.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: April 27, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Joan M. Redwing, Edwin L. Piner
  • Patent number: 6716271
    Abstract: A germane storage and dispensing system, in which germane gas is sorptively retained on an activated carbon sorbent medium in a vessel containing adsorbed and free germane gas. The activated carbon sorbent medium is deflagration-resistant in relation to the germane gas adsorbed thereon, i.e., under deflagration conditions of 65° C. and 650 torr, under which free germane gas undergoes deflagration, the activated carbon sorbent medium does not sustain deflagration of the adsorbed germane gas or thermally desorb the germane gas so that it undergoes subsequent deflagration. The deflagration-resistance of the activated carbon sorbent medium is promoted by pre-treatment of the sorbent material to remove extraneous sorbables therefrom and by maintaining the fill level of the sorbent medium in the gas storage and dispensing vessel at a substantial value, e.g., of at least 30%.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: April 6, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jose Arno, Edward Sturm, Luping Wang, James Dietz
  • Patent number: 6698619
    Abstract: A “bag-in-a-drum” container for storage and dispensing of fluids. The container is adapted to minimize volumetric space requirements in storage, transport and use of the container. The containers are usefully employed in a system of supplying liquid in containers to an end user market and refabricating containers subsequent to consumption of the liquid from the containers.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: March 2, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Richard Wertenberger
  • Patent number: 6699402
    Abstract: A chemical mechanical polishing (CMP) slurry composition for removing noble metal material from a substrate having the noble metal material deposited thereon, for example, a semiconductor device structure including thereon a layer of the noble metal material, e.g., iridium, patterned for use as an electrode. Such polishing slurry composition contains abrasive polishing particles, a bromide compound, a bromate compound for providing free bromine as an oxidizing agent in the composition, and an organic acid for mediating decomposition of the bromate compound in the composition. The CMP slurry composition of the invention is particularly effective for planarization and/or removal of noble metal(s) from the substrate, in applications such as the fabrication of ferroelectric or high permittivity capacitor devices.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: March 2, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Michael W. Russell, Peter C. Van Buskirk, Jonathan J. Wolk, George E. Emond
  • Patent number: 6692546
    Abstract: A chemical mechanical polishing slurry composition and method for using the slurry composition for polishing copper, barrier material and dielectric material that comprises first and second-step slurries. The first-step slurry has a high removal rate on copper and a low removal rate on barrier material. The second-step slurry has a high removal rate on barrier material and a low removal rate on copper and dielectric material. The first slurry comprises at least an organic polymeric abrasive.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: February 17, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ying Ma, William Wojtczak, Cary Regulski, Thomas H. Baum, David D. Bernhard, Deepak Verma
  • Patent number: 6660700
    Abstract: A semiconductor wafer cleaning formulation, including 2-98% wt. organic amine, 0-50% wt. water, 0.1-60% wt. 1,3-dicarbonyl compound chelating agent, 0-25% wt. of additional different chelating agent(s), 0.5-40% wt. nitrogen-containing carboxylic acid or an imine, and 2-98% wt polar organic solvent. The formulations are useful to remove residue from wafers following a resist plasma ashing step, such as inorganic residue from semiconductor wafers containing delicate copper interconnecting structures.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: December 9, 2003
    Assignee: Advanced Technologies Materials, Inc.
    Inventors: William A. Wojtczak, Ma. Fatima Seijo, David Bernhard, Long Nguyen
  • Patent number: 6641938
    Abstract: A silicon carbide epitaxial film, grown on an offcut surface of a SiC crystalline substrate of hexagonal crystal form, having an offcut angle of from about 6 to about 10 degrees, toward the <1{overscore (1)}00> crystalline direction of the substrate. The resultant silicon carbide epitaxial film has superior morphological and material properties.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: November 4, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Barbara E. Landini, George R. Brandes, Michael A. Tischler
  • Patent number: 6637475
    Abstract: A bulk chemical delivery system, comprising: a bulk chemical canister that is connected to at least one manifold box, wherein each manifold box has at least two output lines, wherein each output line connects to a secondary canister. In non-limiting representative example, the bulk chemical canister may have a capacity of 200 liters. Also disclosed are novel manifolds for use in delivering chemicals from canisters and a transportation/containment cart.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: October 28, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Craig M. Noah, John N. Gregg, Robert M. Jackson, Craig Esser
  • Patent number: 6639428
    Abstract: A digital circuit run in conjunction with a system clock signal. The digital circuit includes: a digital logic circuitry regulated by a clock signal and powered by a system current; and a clocking circuitry, communicatively coupled to the digital logic circuitry and the system clock signal, for supplying the clock signal to the digital logic circuitry. The clocking circuitry includes: a power supply monitor circuitry, communicatively coupled to the power supply, providing a first signal indicative of a predetermined level of system current; and a clock regulation circuitry, communicatively coupled to the power supply circuitry, which outputs the clock signal to the digital logic circuitry in response to the first signal. The clock signal comprises (1) the system clock signal when the first signal is in a first state, and (2) a modified clock signal when the first signal is in a second state.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: October 28, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Andy Green, Philip C. Barnett
  • Patent number: 6620225
    Abstract: The invention relates to a fluid storage and delivery system utilizing a porous metal matrix that comprises at least one Group VIII metal or Group IB metal therein. In one aspect of the invention, such porous metal matrix forms a solid-phase metal adsorbent medium, characterized by an average pore diameter of from about 0.5 nm to about 2.0 nm and a porosity of from about 10% to about 30%. Such solid-phase metal adsorbent medium is particularly useful for sorptively storing and desoprotively dispensing a low vapor pressure fluid, e.g., ClF3, HF, GeF4, Br2, etc. In another aspect of the invention, such porous metal matrix forms a solid-phase metal sorbent, characterized by an average pore diameter of from about 0.25 &mgr;m to about 500 &mgr;m and a porosity of from about 15% to about 95%, which can effectively immobilize low vapor pressure liquefied gas.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: September 16, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Luping Wang, Doug Neugold