Patents Assigned to 460Medical, Inc.
  • Publication number: 20230404373
    Abstract: Systems and methods for imaging tissue using a magnetic catheter are provided. In some embodiments, a catheter is provided that includes a catheter body having a proximal end, a distal end, and one or more lumens therebetween. One or more magnetic bodies are positioned along a length of the catheter body and are responsive to an applied magnetic field. At least one of the one or more magnetic bodies can be located at or near the distal end of the catheter body so that the distal end of the catheter can be manipulated with a magnetic field.
    Type: Application
    Filed: June 16, 2023
    Publication date: December 21, 2023
    Applicant: 460Medical, Inc.
    Inventors: Terrance J. Ransbury, Omar Amirana
  • Publication number: 20230293000
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Application
    Filed: January 20, 2023
    Publication date: September 21, 2023
    Applicants: 460Medical, Inc.
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Patent number: 11596472
    Abstract: Ablation and visualization systems and methods to access quality of contact between a catheter and tissue are provided. In some embodiments, a method for monitoring tissue ablation of the present disclosure comprises advancing a distal tip of an ablation catheter to a tissue in need of ablation; illuminating the tissue with UV light to excite NADH in the tissue, wherein the tissue is illuminated in a radial direction, an axial direction, or both; determining from a level of NADH fluorescence in the illuminated tissue when the distal tip of the catheter is in contact with the tissue; and delivering ablation energy to the tissue to form a lesion in the tissue.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: March 7, 2023
    Assignee: 460Medical, Inc.
    Inventors: Terrance J. Ransbury, Kenneth C. Armstrong, Omar Amirana, Cinnamon Larson, James Bowen
  • Patent number: 11559352
    Abstract: Ablation visualization and monitoring systems and methods are provided. In some embodiments, such methods comprise applying ablation energy to a tissue to form a lesion in the tissue, illuminating the tissue with a light to excite NADH in the tissue, wherein the tissue is illuminated in a radial direction, an axial direction, or both, monitoring a level of NADH fluorescence in the illuminated tissue to determine when the level of NADH fluorescence decreases from a base level in the beginning of the ablating to a predetermined lower level, and stopping ablation of the tissue when the level of NADH fluorescence reaches the predetermined lower level.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: January 24, 2023
    Assignees: The George Washington University, 460Medical, Inc.
    Inventors: Omar Amirana, Kenneth C. Armstrong, James Bowen, Cinnamon Larson, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Patent number: 11559192
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: January 24, 2023
    Assignees: The George Washington University, 460Medical, Inc.
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Patent number: 11096584
    Abstract: Systems, catheter and methods for treating Atrial Fibrillation (AF) are provided, which are configure to illuminate a heart tissue having a lesion site; obtain a mitochondrial nicotinamide adenine dinucleotide hydrogen (NADH) fluorescence intensity from the illuminated heart tissue along a first line across the lesion site; create a 2-dimensional (2D) map of the depth of the lesion site along the first line based on the NADH fluorescence intensity; and determine a depth of the lesion site at a selected point along the first line from the 2D map, wherein a lower NADH fluorescence intensity corresponds to a greater depth in the lesion site and a higher NADH fluorescence intensity corresponds to an unablated tissue. The process may be repeated to create a 3 dimensional map of the depth of the lesion.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: August 24, 2021
    Assignees: The George Washington University, 460Medical, Inc.
    Inventors: Marco A. Mercader, Narine Sarvazyan, Terrance J. Ransbury, Kenneth C. Armstrong, Omar Amirana
  • Patent number: 10779904
    Abstract: Catheter for visualizing ablated tissue comprises a catheter body; a distal tip positioned at a distal end of the catheter body, the distal tip defining a illumination cavity, the distal tip having one or more openings for exchange of light energy between the illumination cavity and tissue; a light directing member disposed within the illumination cavity, the light directing member being configured to split light energy received from a light source into multiple beams and to such beams to the tissue through the corresponding more openings in the distal tip.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: September 22, 2020
    Assignee: 460Medical, Inc.
    Inventors: Terrance J. Ransbury, Kenneth C. Armstrong, Omar Amirana, Cinnamon Larson
  • Patent number: 10722301
    Abstract: Ablation visualization and monitoring systems and methods are provided. In some embodiments, such methods comprise applying ablation energy to a tissue to form a lesion in the tissue, illuminating the tissue with a light to excite NADH in the tissue, wherein the tissue is illuminated in a radial direction, an axial direction, or both, monitoring a level of NADH fluorescence in the illuminated tissue to determine when the level of NADH fluorescence decreases from a base level in the beginning of the ablating to a predetermined lower level, and stopping ablation of the tissue when the level of NADH fluorescence reaches the predetermined lower level.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: July 28, 2020
    Assignees: The George Washington University, 460Medical, Inc.
    Inventors: Omar Amirana, Kenneth C. Armstrong, James Bowen, Cinnamon Larson, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Patent number: 10716462
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: July 21, 2020
    Assignees: The George Washington University, 460Medical, Inc.
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Patent number: 10682179
    Abstract: Ablation and visualization systems and methods to access quality of contact between a catheter and tissue are provided. In some embodiments, a method for monitoring tissue ablation of the present disclosure comprises advancing a distal tip of an ablation catheter to a tissue in need of ablation; illuminating the tissue with UV light to excite NADH in the tissue, wherein the tissue is illuminated in a radial direction, an axial direction, or both; determining from a level of NADH fluorescence in the illuminated tissue when the distal tip of the catheter is in contact with the tissue; and delivering ablation energy to the tissue to form a lesion in the tissue.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: June 16, 2020
    Assignee: 460Medical, Inc.
    Inventors: Terrance J. Ransbury, Kenneth C. Armstrong, Omar Amirana, Cinnamon Larson, James Bowen