Patents Assigned to ACCONEER AB
  • Patent number: 11899102
    Abstract: The disclosure relates to an autonomous moving object comprising: a radar sensor configured to scan a volume in front of the object, and a radar signal processor configured to: acquire a sequence of radar responses, each radar response of the sequence being acquired at a different position of the autonomous moving object, and perform synthetic aperture radar processing of at least parts of the acquired sequence of radar responses to obtain a synthetic aperture radar image representing response amplitude as a function of at least distance and angle with respect to the radar sensor, the autonomous moving object further comprising: a controller configured to detect presence of a potential obstacle within a pre-defined sub-volume in front of the autonomous moving object by analyzing the synthetic aperture radar image and, in response to detecting presence of a potential obstacle, output a control command configured to cause a changed movement of the autonomous moving object.
    Type: Grant
    Filed: July 4, 2019
    Date of Patent: February 13, 2024
    Assignee: Acconeer AB
    Inventors: Bo Lincoln, Peter Almers, Rikard Nelander
  • Publication number: 20230228843
    Abstract: A radar device comprising: a printed circuit board (120), PCB, comprising a ground plane (1202), a radar sensor chip package (130) mounted on the PCB (120) and comprising a mm Wave radio frequency, RF, integrated circuit (1302) and a planar antenna structure (1304) configured as an antenna-in-package and oriented in a plane parallel to the ground plane (1202), wherein the mmWave RF integrated circuit (1302) is configured to output a mmWave signal (1360) to be transmitted by the planar antenna structure (1304), and a cavity (140), wherein the radar sensor chip package (130) is arranged in the cavity (140), the cavity (140) having an open side (1402), and the cavity (140) being defined by a conductive rear wall surface (1404) opposite the open side (1402), a pair of mutually opposite and conductive sidewall surfaces (1406), a conductive top surface (1408), and a conductive bottom surface (1410), wherein at least a portion of the conductive bottom surface (1410) is formed by at least a portion of the ground plan
    Type: Application
    Filed: June 8, 2021
    Publication date: July 20, 2023
    Applicant: Acconeer AB
    Inventors: Ehsan Foroozanfard, Mikael Egard
  • Patent number: 11669105
    Abstract: According to a first aspect of the present inventive concept there is provided an autonomous mobile cleaning robot, comprising: a radar sensor configured to scan a surface, during a movement of the robot along the surface, by transmitting radar signals towards the surface and acquiring, at different positions along said movement, radar responses from the surface, a radar signal processor configured to extract one or more features of each acquired radar response from the surface, and a controller configured to control an operation of the robot based on the extracted one or more features.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: June 6, 2023
    Assignee: ACCONEER AB
    Inventors: Hans Grubeck, Rikard Nelander, Per Atlevi, Mikael Egard
  • Publication number: 20220091257
    Abstract: An autonomous moving object comprising a radar sensor is provided. The radar sensor is configured to, during movement, acquire data sets representing reflections from surface portions located within a distance range, and, at least at a sequence of occasions, illuminate a surface region and acquire a data set representing, for each of a set of distances within said distance range, an amplitude and a phase of reflected radar signals received from surface portions located at said distance. Said surface regions comprise common sub-region illuminated at each of said occasions. A radar signal processor is configured to receive the data sets acquired at each of said sequence of occasions. The received data sets form a collection of data sets, wherein each data set of said collection comprises a data subset pertaining to said common sub-region. A surface classifier processor is configured to output a classification of a surface type of the surface based on said collection of data subsets.
    Type: Application
    Filed: January 24, 2020
    Publication date: March 24, 2022
    Applicant: Acconeer AB
    Inventors: Peter Almers, Bo Lincoln, Rikard Nelander, David Montgomery, Gaston Holmén
  • Publication number: 20200096631
    Abstract: According to an aspect of the present inventive concept there is provided an autonomous mobile robot comprising: a set of radar sensors, said sensors being arranged at spatially different positions on the mobile robot, said set including at least a first radar sensor having a first main detection lobe extending in front of the robot and a second radar sensor having a second main detection lobe extending in front of the robot, wherein the first radar sensor and the second radar sensor are arranged such that the first main detection lobe and the second main detection lobe intersect in front of the mobile robot.
    Type: Application
    Filed: February 5, 2018
    Publication date: March 26, 2020
    Applicant: Acconeer AB
    Inventors: Mikael Egard, Hans Grubeck
  • Patent number: 10444338
    Abstract: According to one aspect of the inventive concept there is provided a transmitter-receiver system comprising: a transmitter arranged to transmit a wavelet; a receiver arranged to receive a wavelet; a wavelet generator arranged to generate a reference wavelet; and timing circuitry arranged to receive a reference clock signal, output a first trigger signal for triggering transmission of a wavelet and output a second trigger signal for triggering generation of a reference wavelet. The timing circuitry further comprises a delay line including at least one delay element and being arranged to receive a signal at an input of the delay line and transmit a delayed signal at an output of the delay line, wherein a state of each delay element of at least a subset of said at least one delay elements is switchable between at least a first state and a second state. A delay element in said first state, i.e. switched to its first state, presents a first propagation delay. A delay element in said second state, i.e.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: October 15, 2019
    Assignee: ACCONEER AB
    Inventors: Mats Ärlelid, Denis Chouvaev, Mikael Egard
  • Publication number: 20180164419
    Abstract: According to one aspect of the inventive concept there is provided a transmitter-receiver system comprising: a transmitter arranged to transmit a wavelet; a receiver arranged to receive a wavelet; a wavelet generator arranged to generate a reference wavelet; and timing circuitry arranged to receive a reference clock signal, output a first trigger signal for triggering transmission of a wavelet and output a second trigger signal for triggering generation of a reference wavelet. The timing circuitry further comprises a delay line including at least one delay element and being arranged to receive a signal at an input of the delay line and transmit a delayed signal at an output of the delay line, wherein a state of each delay element of at least a subset of said at least one delay elements is switchable between at least a first state and a second state. A delay element in said first state, i.e. switched to its first state, presents a first propagation delay. A delay element in said second state, i.e.
    Type: Application
    Filed: March 5, 2015
    Publication date: June 14, 2018
    Applicant: Acconeer AB
    Inventors: Mats Ärlelid, Denis Chouvaev, Mikael Egard
  • Patent number: 9608567
    Abstract: A transceiver comprising a tank circuit, a variable differential conductance, VDC, coupled to the tank circuit, and a variable resistance coupled to the VDC is disclosed. The variable resistance is arranged to bias the VDC into a region of positive differential conductance during a first state of operation of the transceiver, and bias the VDC into a region of negative differential conductance during a second state of operation of the transceiver.
    Type: Grant
    Filed: May 30, 2011
    Date of Patent: March 28, 2017
    Assignee: Acconeer AB
    Inventors: Mikael Egard, Mats Ärlelid, Lars-Erik Wernersson
  • Patent number: 9117753
    Abstract: According to one aspect of the inventive concept there is provided a process for manufacturing a semiconductor device, comprising: providing a channel layer (104), providing a mask (106) on the channel layer, epitaxially growing a contact layer (108) in contact with the channel layer, epitaxially growing a support layer (110) on the contact layer, wherein the support layer is arranged to be etched at a higher rate than the contact layer, forming a trench extending through the support layer by removing the mask, and providing a conductor (118) in the trench. There is also provided an intermediate product for the manufacture of a semiconductor device.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: August 25, 2015
    Assignee: Acconeer AB
    Inventors: Mikael Egard, Erik Lind, Lars-Erik Wernersson
  • Publication number: 20140106553
    Abstract: According to one aspect of the inventive concept there is provided a process for manufacturing a semiconductor device, comprising: providing a channel layer (104), providing a mask (106) on the channel layer, epitaxially growing a contact layer (108) in contact with the channel layer, epitaxially growing a support layer (110) on the contact layer, wherein the support layer is arranged to be etched at a higher rate than the contact layer, forming a trench extending through the support layer by removing the mask, and providing a conductor (118) in the trench. There is also provided an intermediate product for the manufacture of a semiconductor device.
    Type: Application
    Filed: June 1, 2012
    Publication date: April 17, 2014
    Applicant: ACCONEER AB
    Inventors: Mikael Egard, Erik Lind, Lars-Erik Wernersson
  • Publication number: 20140098845
    Abstract: A transceiver comprising a tank circuit, a variable differential conductance, VDC, coupled to the tank circuit, and a variable resistance coupled to the VDC is disclosed. The variable resistance is arranged to bias the VDC into a region of positive differential conductance during a first state of operation of the transceiver, and bias the VDC into a region of negative differential conductance during a second state of operation of the transceiver.
    Type: Application
    Filed: May 30, 2011
    Publication date: April 10, 2014
    Applicant: ACCONEER AB
    Inventors: Mikael Egard, Mats Ärlelid, Lars-Erik Wernersson