Patents Assigned to AGA AB
  • Patent number: 9341369
    Abstract: Burner device (2) for an industrial furnace (1) comprising a channel (3) for fuel, a channel (4) for a first oxidant, an outlet (9) for flue gases, a control device (10) and a heat buffer (7), where the first oxidant and the flue gases alternating are led through the heat buffer (7). The invention is characterized in that a separate lancing device (6) is arranged to supply a second oxidant to the burner device (2).
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: May 17, 2016
    Assignee: AGA AB
    Inventors: Tomas Ekman, Anders Lugnet
  • Patent number: 9255738
    Abstract: A method and apparatus for heating a sheet-like material to a predetermined temperature profile along the length and across the width of the material. The sheet-like material is transported within a furnace relative to at least one burner holder above or below, or above and below, the material. Each burner holder includes a number of direct flame impingement burners located side-by-side in a row. The burners are directed toward the sheet-like material, and the individual burners in each burner holder are oriented and controlled so that heat output from the burners provides the predetermined temperature profile within the sheet-like material.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: February 9, 2016
    Assignee: AGA AB
    Inventors: Mats Gartz, Sten Ljungars
  • Patent number: 8899970
    Abstract: Burner device (2) for an industrial furnace (1) comprising a channel (3) for fuel, a channel (4) for a first oxidant, an outlet (9) for flue gases, a control device (10) and a heat buffer (7), where the first oxidant and the flue gases alternatingly are led through the heat buffer (7). The invention is characterized in that a separate lancing device (6) is arranged to supply a second oxidant to the burner device (2).
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: December 2, 2014
    Assignee: AGA AB
    Inventors: Tomas Ekman, Anders Lugnet
  • Publication number: 20140193758
    Abstract: Burner device (2) for an industrial furnace (1) comprising a channel (3) for fuel, a channel (4) for a first oxidant, an outlet (9) for flue gases, a control device (10) and a heat buffer (7), where the first oxidant and the flue gases alternating are led through the heat buffer (7). The invention is characterized in that a separate lancing device (6) is arranged to supply a second oxidant to the burner device (2).
    Type: Application
    Filed: March 12, 2014
    Publication date: July 10, 2014
    Applicant: AGA AB
    Inventors: Tomas EKMAN, Anders LUGNET
  • Patent number: 8689708
    Abstract: Method and device for combusting a solid phase fuel, where the fuel is caused, by the help of a non-pneumatic feeding element (11), to be fed to an inlet opening (11a) in a burner device (10), where the burner device (10) includes a first inlet (13a) for the oxidant through which an oxidant is caused to flow via a first supply conduit (13). The first inlet (13a) for oxidant is arranged in the form of a first opening arranged by the inlet opening, through which the oxidant is caused to flow out, through a burner pipe (16) and out through a burner orifice (17) to a combustion space (18), so that the oxidant by ejector action causes the fuel to be conveyed through the burner pipe and out through the burner orifice (17), and water vapour is added to the oxidant before the oxidant reacts with the fuel.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: April 8, 2014
    Assignee: AGA AB
    Inventors: Tomas Ekman, Anders Lugnet
  • Patent number: 8382468
    Abstract: Method for combusting a solid phase fuel, where the fuel is caused, by the help of a non-pneumatic feeding element (11), to be fed to an inlet opening (11a) in a burner device (10) having a first inlet (13a) for the oxidant through which an oxidant is caused to flow via a first supply conduit (13). The first inlet (13a) for oxidant is caused to be arranged in the form of an opening surrounding the inlet opening (11a), in that the oxidant is caused to flow out through the opening (13a) with a velocity of at least 100 m/s, through a burner pipe (16) and out through a burner orifice (17) to a combustion space (18), so that the oxidant by ejector action causes the fuel to be conveyed through the burner pipe (16) and out through the burner orifice (17).
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: February 26, 2013
    Assignee: AGA AB
    Inventor: Tomas Ekman
  • Patent number: 8277720
    Abstract: Device for heating metal material includes an elongated DFI burner arranged to be driven with gaseous oxidant and gaseous fuel and to be displaceable and longitudinally arranged with respect to the metal material. The burner includes longitudinal tubular vessels for fuel and for oxidant, arranged in parallel to one another and relative to the surface of the metal material. Each of these vessels has an opening through which the fuel and oxidant flow out and then converge in an ignition zone outside the respective vessels, where a flame is generated. Supply devices are arranged via a regulator to keep the pressure constant throughout the respective vessel during operation. Each of the vessels has a longitudinally displaceable piston for controlling the longitudinal extension of the flame in the longitudinal direction of the vessels.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: October 2, 2012
    Assignee: AGA AB
    Inventors: Carl-Lennart Axelsson, Ola Ritzen, Anders Lugnet, Mattias Ekblom
  • Patent number: 8172567
    Abstract: A method for providing uniform heat distribution within a furnace as well as decreasing the amount of NOx in the combustion products, when operating an industrial furnace having at least one conventional burner using air as the oxidant. At least one lance is connected with the furnace, and an oxidant including oxygen gas is flowed into the furnace through the lance to impinge against a flame issuing from the burner at a certain impingement point. The amount of oxygen supplied by the air supply to the burner together with the amount of oxidant issuing from the lance corresponds with the stoichiometric amount for a fuel supplied to the burner. At least 50% of the supplied oxygen for combustion is supplied through the lancing of oxidant, and the oxidant is flowed into the furnace through the lance at a velocity of at least 200 m/s.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: May 8, 2012
    Assignee: AGA AB
    Inventor: Johannes Lodin
  • Patent number: 8075303
    Abstract: Method for homogenizing the heat distribution as well as decreasing the amount of NOx in combustion products when operating an industrial furnace with at least one conventional burner using air as an oxidant. An additional oxidant including at least 50% oxygen gas is caused to stream into the furnace through a lance. The total amount of oxygen supplied is balanced against the amount of fuel being supplied through the air burner. Firstly, the combination of at least 40% of the supplied oxygen is supplied through the additional oxidant, the lance is arranged at a distance from the air burner of at least 0.3 meters, and the additional oxidant streams into the furnace through the lance with at least sonic velocity, and secondly the additional oxidant is supplied only when the air burner is operated at a certain lowest power or at a higher power.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: December 13, 2011
    Assignee: AGA AB
    Inventors: Tomas Ekman, Ola Ritzén, Anders Lugnet, Mats Gartz
  • Patent number: 8057222
    Abstract: A direct flame impingement burner including a metal block with a fuel inlet and an oxidant inlet and at least two outlet nozzles having a set of identical nozzle outlet openings. The oxidant inlet is connected with an oxidant chamber within the block that is connected with at least one oxidant outlet opening in the set of nozzle outlet openings by passageways of identical length and cross-sectional area. The fuel inlet is connected with a fuel chamber within the block that is connected with at least one fuel outlet opening in the set of nozzle outlet openings by passageways of identical length and cross-sectional area. The fuel gas pressure is equal over all corresponding fuel outlet openings in the set of openings in each nozzle, and the oxidant gas pressure is equal over all corresponding oxidant outlet openings in the set of openings in each nozzle.
    Type: Grant
    Filed: May 6, 2006
    Date of Patent: November 15, 2011
    Assignee: AGA AB
    Inventors: Lennart Rangmark, Tomas Ekman
  • Patent number: 8057221
    Abstract: A method and a burner for combustion in a heating furnace of a fuel with an oxidant in the form of oxygen gas, wherein fuel and oxidant are supplied to a burner head. Fuel and oxidant, respectively, are injected via the burner head through at least two pairs of nozzles, wherein one nozzle pair is defined by a separate fuel nozzle and a separate oxidant nozzle. The nozzles of the nozzle pairs are uniformly distributed over the furnace-interior-facing surface of the burner and within the circumference of the burner head. An oxidant nozzle is provided on each side of a fuel nozzle.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: November 15, 2011
    Assignee: AGA AB
    Inventors: Lennart Rangmark, Tomas Ekman
  • Publication number: 20110187031
    Abstract: Device for heating a metal material, includes an elongated DFI burner device, arranged to be driven with gaseous oxidant and gaseous fuel and to be displaceable and longitudinally arranged with respect to the metal material. The device has supply devices for fuel and oxidant. The burner device includes longitudinal, tubular vessels for fuel and for oxidant, arranged in parallel to one another and relative to the surface of the metal material. Each vessel has one or more openings arranged along the vessel, through which the fuel and oxidant are arranged to flow out and then converge in an ignition zone outside the respective vessels, where a flame is generated. The respective supply devices are arranged via a regulator to keep the pressure constant throughout the vessel in question during operation. Each vessel has a longitudinally displaceable piston for controlling the longitudinal extension of the flame in the longitudinal direction of the vessels.
    Type: Application
    Filed: September 12, 2008
    Publication date: August 4, 2011
    Applicant: AGA AB
    Inventors: Carl-Lennart Axelsson, Ola Ritzen, Anders Lugnet, Mattias Ekblom
  • Publication number: 20110146851
    Abstract: Method for use when galvannealing a steel material (1), in which the material (1), in a first step, is preheated to a first process temperature and is coated with a layer of a liquid alloying metal (3), in a second step is further heated to a second, higher process temperature, and in a third step is kept at the second process temperature during a predetermined time period so that the alloying metal coating at least partially is caused to alloy with the steel material (1). The heating in the second step is caused to be carried out by one or several DFI burners (5).
    Type: Application
    Filed: May 19, 2009
    Publication date: June 23, 2011
    Applicant: AGA AB
    Inventors: Mats Gartz, Ola Ritzén
  • Publication number: 20100239989
    Abstract: Method for homogenizing the heat distribution as well as decreasing the amount of NOx in combustion products when operating an industrial furnace with at least one conventional burner using air as an oxidant. An additional oxidant including at least 50% oxygen gas is caused to stream into the furnace through a lance. The total amount of oxygen supplied is balanced against the amount of fuel being supplied through the air burner. Firstly, the combination of at least 40% of the supplied oxygen is supplied through the additional oxidant, the lance is arranged at a distance from the air burner of at least 0.3 meters, and the additional oxidant streams into the furnace through the lance with at least sonic velocity, and secondly the additional oxidant is supplied only when the air burner is operated at a certain lowest power or at a higher power.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 23, 2010
    Applicant: AGA AB
    Inventors: Tomas EKMAN, Ola RITZÉN, Anders LUGNET, Mats GARTZ
  • Patent number: 7763117
    Abstract: A method for the manufacture of extended steel products. The steel product is initially contaminated by oils and by at least one of organic and inorganic particles that are suspended or dissolved in the oils. Following the shaping of the steel product by working but before the subsequent treatment of the steel product, burners emit exhaust gases that interact directly with the surface of the steel product. The burners are driven by an oxidant that contains at least 80% oxygen by weight, whereby oils that are present on the product are vaporized and combusted. The exhaust gases interact with the surface of the steel product with a speed that is sufficiently high to blow away organic and/or inorganic particles from the surface of the steel product.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: July 27, 2010
    Assignee: AGA AB
    Inventors: Ola Ritzén, Tomas Ekman, Lennart Rangmark
  • Patent number: 7681572
    Abstract: Methods for administering medical gases include providing the medical gas in compressed gas cartridges containing an amount of the medical gas preferably corresponding substantially to a unit dose of the medical gas and providing a patient with access to the medical gas from the gas cartridge upon need therefor. Apparatus for administering medical gases also includes a housing, a cassette associated with the housing containing at least one compressed gas cartridge preferably containing at least an amount of the medical gas substantially as required for a single dose and a patient supply interface to provide the medical gas to the patient.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: March 23, 2010
    Assignee: AGA AB
    Inventor: Royce S. Fishman
  • Patent number: 7618501
    Abstract: A method for the heat treatment of extended steel products such as, for example, rods, pipes, work pieces, etc., while the products are in motion. The products (13, 14, 33, 34, 35) are caused to be heated by DFI burners (6-11, 16-20) (where “DFI” is an abbreviation for “direct flame impingement”), which burners are caused to be located such that one set of burners (6, 7, 8, 9, 10, 11), (16, 17, 18, 19, 20) essentially covers the circumference of the products, and in the burners are caused to be located integrated into arrangements (2-4, 13) that transport the product in a direction that is perpendicular to a plane in which the flames of the burners essentially lie.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: November 17, 2009
    Assignee: AGA AB
    Inventor: Mats Gartz
  • Patent number: 7618254
    Abstract: A method for igniting a fuel/oxidant mixture in an industrial furnace. At least one fuel supply conduit and at least one oxidant supply conduit is provided, each conduit having an opening that opens on a side of the burner head that faces the furnace interior space. Fuel and oxidant are supplied to the burner head, and a light detector for detecting ultraviolet light, or other light wavelengths, is provided for detecting light that indicates the presence of a flame. A laser is positioned to emit a laser beam onto a point on the burner head adjacent the conduit outlets and to heat that point to a temperature exceeding the ignition temperature of the fuel/oxidant mixture. When the burner has ignited, the detector emits a signal to a control circuit that extinguishes the laser beam.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: November 17, 2009
    Assignee: AGA AB
    Inventor: Mats Gartz
  • Publication number: 20090263752
    Abstract: Method for combusting a solid phase fuel, where the fuel is caused, by the help of a non-pneumatic feeding element (11), to be fed to an inlet opening (11a) in a burner device (10) having a first inlet (13a) for the oxidant through which an oxidant is caused to flow via a first supply conduit (13). The first inlet (13a) for oxidant is caused to be arranged in the form of an opening surrounding the inlet opening (11a), in that the oxidant is caused to flow out through the opening (13a) with a velocity of at least 100 m/s, through a burner pipe (16) and out through a burner orifice (17) to a combustion space (18), so that the oxidant by ejector action causes the fuel to be conveyed through the burner pipe (16) and out through the burner orifice (17).
    Type: Application
    Filed: April 22, 2009
    Publication date: October 22, 2009
    Applicant: AGA AB
    Inventor: Tomas EKMAN
  • Patent number: 7594811
    Abstract: A method and apparatus relating to the combustion of a fuel with an oxidant in a heating furnace, wherein the fuel and the oxidant are delivered to a burner head. In a first method step fuel and oxidant are emitted from the burner head in close proximity to each other, so that combustion essentially takes place close to and at a small distance outward of the burner head, and until a temperature is reached in the furnace space that exceeds the spontaneous combustion temperature of the fuel. In a second method step the fuel and the oxidant are instead emitted from the burner head at a mutual distance apart, so that combustion takes place at a distance from the burner head corresponding to at least the diameter of the burner head and outward of the burner head.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: September 29, 2009
    Assignee: AGA AB
    Inventors: Anders Lugnet, Tomas Ekman