Patents Assigned to Agilent Technologies, Inc.
  • Publication number: 20240133412
    Abstract: In some examples, a vessel mounting system may include a first collar and a second collar. The second collar may include a clip engageable with an edge of the first collar to engage the second collar with the first collar.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 25, 2024
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Manuel VAN VENROOY, Patrick MATZ, Alan NORMAN
  • Publication number: 20240133411
    Abstract: In some examples, a vessel mounting system may include a first collar including at least one protrusion engageable with a groove of a vessel to align the first collar relative to the vessel. A second collar may include at least one stud disposable in a corresponding aperture of the first collar to align the second collar relative to the first collar.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 25, 2024
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Manuel VAN VENROOY, Patrick MATZ, Alan NORMAN
  • Publication number: 20240133410
    Abstract: In some examples, a vessel mounting system may include a first collar including at least one flexible member engageable with a groove of a vessel to align the first collar relative to the vessel. A second collar may include at least one clip engageable with a complementary clip of the first collar to engage the second collar with the first collar.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 25, 2024
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Manuel VAN VENROOY, Patrick MATZ, Alan NORMAN
  • Publication number: 20240131519
    Abstract: In some examples, a vessel mounting system may include a first collar and a second collar. The second collar may include at least one positioning member to position the second collar relative to the first collar. Further, the second collar may include at least one interlocking member to lock the second collar to the first collar.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 25, 2024
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Manuel VAN VENROOY, Patrick MATZ, Alan NORMAN
  • Patent number: 11964874
    Abstract: There is disclosed a method of producing etched non-porous particles. The method includes, in some examples, coating a non-porous particle with a hydrophilic polymer and treating the coated particle with acid or base. Also provided is etched non-porous particles capable of separating a variety of analytes, including biomolecules.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: April 23, 2024
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventor: Ta-Chen Wei
  • Publication number: 20240118252
    Abstract: In a method of allocating a plurality of functional tasks to a plurality of functional devices each capable of carrying out one or more of the functional tasks, the functional devices are analytical devices and each of the functional tasks corresponds to a respective predefined process related to analyzing a respective sample by a respective one of the functional devices. The functional tasks are allocated to the functional devices based on a criterion to achieve compliance with at least one predefined control target of controlling the functional devices.
    Type: Application
    Filed: October 9, 2023
    Publication date: April 11, 2024
    Applicant: Agilent Technologies, Inc.
    Inventors: Kyle Robert Busch, Stefan Mittrich, Udo Herynek
  • Patent number: 11955326
    Abstract: In some examples, a multi-device removal and installation tool may include a device removal tool including catch members engageable with an engagement face of a device to attach, upon engagement of the catch members with the engagement face, the device removal tool to the device. The catch members may engage the engagement face with a removal force that is sufficient to remove, upon engagement of the catch members with the engagement face, the device from an instrument. The multi-device removal and installation tool may further include a torque limit tool including a retainer having at least one protrusion, and a drive member having an inside surface and an outside surface. The torque limit tool may further include at least one detent positioned on the inside surface.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: April 9, 2024
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventor: Alan D. Loux
  • Patent number: 11946913
    Abstract: An injector is configured for injecting a fluidic sample from an injector path into a mobile phase in a separation path between a fluid drive and a sample separation unit of a sample separation device. The injector includes a control unit configured for generating a first overpressure in a blocked first partial path of the injector path by a first pressure source, for generating a second overpressure in a blocked second partial path of the injector path by a second pressure source, for subsequently fluidically coupling the first partial path with the second partial path for generating an expansion stroke for releasing a gas bubble in the injector path, and for rinsing the released gas bubble from the injector path.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: April 2, 2024
    Assignee: Agilent Technologies, Inc.
    Inventors: Thomas Ortmann, Martin Seifried, Sam Wouters, Irina Spuling
  • Patent number: 11940359
    Abstract: The present disclosure is directed to an improved method for distinguishing tissue from an embedding medium, such as paraffin in a formalin-fixed paraffin-embedded sample. The method involves the use of fluorescence of naturally-occurring species in tissue to determine the location of the tissue in the embedded sample. An embedded sample is generally excited by light of a selected wavelength, and the fluorescence emission at an emitted wavelength is used to locate the boundary or location of the tissue in the embedded sample.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: March 26, 2024
    Assignee: Agilent Technologies, Inc.
    Inventors: Kyle Schleifer, Kristin Briana Bernick, Adrienne Mccampbell, Nicholas M. Sampas, Victor Lim
  • Patent number: 11940442
    Abstract: The current technology is related to methods for rapidly determining the metabolic baseline and potential of living cells. Embodiments relate to measuring the activity of each of the two major energy-generating pathways within the cell: mitochondrial respiration and glycolysis, first under baseline conditions, and again after applying a stress to the cells to demand increased energy supply. In some embodiments the stress may be applied by exposing the cells to a combination of two chemical compounds: a mitochondrial uncoupler and an ATP synthase inhibitor. In one embodiment, the metabolic energy generating activity of the mitochondrial respiration pathway is determined by measuring the rate of oxygen consumption by the living cells, and the metabolic energy generating activity of the glycolysis pathway is determined from a measurement of extracellular acidification caused by secretion of protons from the cell.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: March 26, 2024
    Assignee: Agilent Technologies, Inc.
    Inventors: David A. Ferrick, Brian Dranka
  • Publication number: 20240093353
    Abstract: A multilayer coating including an adhesion layer; and a protective coating is disclosed. The multilayer coating can be applied to a portion of at least one of a base and a tip of an interface cone. A method of making a coated interface cone is also disclosed.
    Type: Application
    Filed: February 24, 2022
    Publication date: March 21, 2024
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Jing TANG, Elizabeth CARR
  • Patent number: 11933769
    Abstract: A multidimensional sample separation apparatus includes a first separation dimension for separating a fluidic sample, a second separation dimension for further separating the fluidic sample, a switching mechanism, and a control unit. The first separation dimension includes a first fluid drive unit and a first sample separation unit. The second separation dimension includes a second fluid drive unit for driving the separated fluidic sample, and second and third sample separation units each configured for further separating the separated fluidic sample. The switching mechanism is configured for selectively switching an outlet of the first separation dimension in fluid communication with a selected one of the second sample separation unit and/or the third sample separation unit. The control unit is configured for controlling a pressure at inlets of the second sample separation unit and the third sample separation unit to be substantially the same at least at the time of the switching.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: March 19, 2024
    Assignee: Agilent Technologies, Inc.
    Inventors: Dwight Robert Stoll, Klaus Witt, Konstantin Shoykhet
  • Patent number: 11935735
    Abstract: A circuit and method for providing high-voltage radio-frequency (RF) energy to an instrument at multiple frequencies includes a plurality of inputs each configured to receive an RF voltage signal oscillating at a corresponding frequency, and a step-up circuit for generating magnified RF voltage signals based on the received RF voltage signals. The step-up circuit includes an LC network operable to isolate the RF voltage signals at the plurality inputs from one another while preserving a voltage magnification from each input to a common output at each of the corresponding frequencies.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: March 19, 2024
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventor: Michael J. Schoessow
  • Patent number: 11931918
    Abstract: A microfluidic component for a sample separation apparatus includes a component body including ceramic and at least one microfluidic structure in the component body. The component body is manufactured by additive manufacturing, in particular by three-dimensional printing.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: March 19, 2024
    Assignee: Agilent Technologies, Inc.
    Inventors: Darijo Zeko, Tony Ziegler, Thomas Ortmann
  • Patent number: 11936301
    Abstract: A high-voltage (HV) power supply outputs an output voltage based on a control signal produced by a dual analog/digital feedback loop. The control signal is determined at least in part by an error amplifier that receives a measurement signal, proportionally attenuated from the output voltage, and a digital-to-analog converter (DAC) output signal. An analog-to-digital converter (ADC) also receives the measurement signal and transmits it in digitized form to a digital processor. The digital processor calculates a digital DAC data signal based on the measurement signal, and on a digital set-point input signal corresponding to a set-point voltage value of the output voltage desired to be outputted from the high-voltage source. A DAC receives the DAC data signal and converts it to the DAC output signal transmitted to the error amplifier.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: March 19, 2024
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventor: David Deford
  • Patent number: 11926870
    Abstract: The present invention relates to the technical field of nucleic acid amplification using a Polymerase Chain Reaction (PCR). Specifically, the present invention relates to Polymerase Chain Reaction (PCR) primers and Polymerase Chain Reaction (PCR) nucleic acid amplification mixture and the use thereof in (quantitative) Polymerase Chain Reactions (PCR).
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: March 12, 2024
    Assignee: Agilent Technologies, Inc.
    Inventor: Jurgen Del Favero
  • Patent number: 11921093
    Abstract: A mounting device for mounting a sample separation unit configured for separating, preferably chromatographically separating, compounds in a fluidic sample includes a first fluid connector configured for being mechanically and fluidically coupled with a first fluid interface of the sample separation unit, a second fluid connector configured for being mechanically and fluidically coupled with a second fluid interface of the sample separation unit, and a swivel mechanism configured for swivelling the first fluid connector between a mounting orientation for mounting the first fluid interface of the sample separation unit at the first fluid connector and an alignment orientation for aligning the second fluid interface of the mounted sample separation unit with the second fluid connector for subsequently coupling the second fluid interface with the second fluid connector.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: March 5, 2024
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniela Loraing, Lena Höninger, Uwe Effelsberg, Andreas Otto, Ansgar Waldbaur, Armin Steinke, Thomas Ortmann, Michael Lang
  • Publication number: 20240058731
    Abstract: In some examples, a system may include a housing attachable to a column and including a turn fitting and a receiver. The turn fitting may be movable relative to the receiver and along an axis of the housing between a neutral state and an attached state. In the neutral state, the turn fitting may be disposed at a first axial location along the axis of the housing. In the attached state, the turn fitting may be disposed at a second axial location along the axis of the housing.
    Type: Application
    Filed: October 31, 2023
    Publication date: February 22, 2024
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Lucas SERGE, Thomas HARRISON
  • Publication number: 20240058813
    Abstract: A fluid delivery device is configured to create a pressure differential across a compartment in which a liquid resides, causing the liquid to flow through the compartment. After a period of time, the fluid delivery device is configured to eliminate the pressure differential and thereby equilibrate the pressure across the compartment, with the use of a pressure equilibration channel that is separate from the compartment. The compartment may contain a packed bed of solid phase particles such as beads. In such case, the pressure differential causes the liquid to flow through the packed bed. The liquid may include chemical reagents or precursors that participate in chemical reactions on or at the solid phase particles. The reactions may relate to chemical synthesis, for example the synthesis of bio-chemicals such as nucleotides.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicants: Agilent Technologies, Inc., Agilent Technologies, Inc.
    Inventors: Jonathan Irribarren, Joel Myerson, Bo Curry
  • Patent number: D1021136
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: April 2, 2024
    Assignee: Agilent Technologies, Inc.
    Inventors: Jason Dell'Arciprete, Jon Arsenault