Patents Assigned to Aidi Corporation
  • Patent number: 8494319
    Abstract: Arrayed waveguide grating (AWG) circuits are disclosed, having different radii in the slab regions to supplement and/or replace other mechanical techniques which enable athermal AWGs. Dual band, interleaved pairs of athermal AWGs are also disclosed, with improved cost, space and center wavelength properties, for, e.g., optical line terminal (OLT), and remote node (RN) applications.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: July 23, 2013
    Assignee: AiDi Corporation
    Inventor: Katsunari Okamoto
  • Patent number: 8406580
    Abstract: A transform spectrometer measurement apparatus and method for a planar waveguide circuit (PLC). The spectrometer typically includes an input optical signal waveguide carrying an input optical signal; a plurality of couplers, each connected to the input optical signal waveguide, and each including a coupler output for carrying a coupled optical signal related to the input optical signal; and an array of interleaved, waveguide Mach-Zehnder interferometers (MZI), each having at least one input MZI waveguide, each MZI input waveguide receiving a coupled optical signal from a respective coupler output. A phase shifting circuit is applied to at least one arm of the MZIs to induce an active phase shift on the arm to thereby measure phase error in the MZIs. Light output from the MZIs is measured under intrinsic phase error conditions and after an active phase shift by the phase shifting circuit.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: March 26, 2013
    Assignees: AiDi Corporation, GUNMA University
    Inventors: Kazumasa Takada, Katsunari Okamoto
  • Publication number: 20120050744
    Abstract: A transform spectrometer measurement apparatus and method for a planar waveguide circuit (PLC). The spectrometer typically includes an input optical signal waveguide carrying an input optical signal; a plurality of couplers, each connected to the input optical signal waveguide, and each including a coupler output for carrying a coupled optical signal related to the input optical signal; and an array of interleaved, waveguide Mach-Zehnder interferometers (MZI), each having at least one input MZI waveguide, each MZI input waveguide receiving a coupled optical signal from a respective coupler output. A phase shifting circuit is applied to at least one arm of the MZIs to induce an active phase shift on the arm to thereby measure phase error in the MZIs. Light output from the MZIs is measured under intrinsic phase error conditions and after an active phase shift by the phase shifting circuit.
    Type: Application
    Filed: July 28, 2011
    Publication date: March 1, 2012
    Applicants: GUNMA UNIVERSITY, AiDi CORPORATION
    Inventors: Kazumasa TAKADA, Katsunari OKAMOTO
  • Patent number: 8098379
    Abstract: A transform spectrometer implemented on a planar waveguide circuit (PLC), having an input optical signal waveguide carrying an input optical signal to be analyzed; a plurality of couplers, each connected to the input optical signal waveguide, and each including a coupler output for carrying a coupled optical signal related to the input optical signal. An array of interleaved, asymmetrical waveguide Mach-Zehnder interferometers (MZI) is formed on the PLC, each having at least one input MZI waveguide, each MZI input waveguide receiving a coupled optical signal from a respective coupler output; wherein at least some of the input MZI waveguides intersect in a common layer of the PLC, at an angle which allows their respective coupled optical signals to transmit without unacceptable attenuation. This arrangement improves spatial efficiency of the PLC, allowing more MZIs to be implemented, resulting in increased spectral resolution.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: January 17, 2012
    Assignee: AiDi Corporation
    Inventor: Katsunari Okamoto
  • Publication number: 20110142396
    Abstract: A silicon photonics array waveguide grating (AWG), and methods of their manufacture, including a plurality of silicon photonics array waveguides running from at least one of an input and output slab waveguide region, wherein first sections of each of the plurality of array waveguides have a first core geometry; and second sections of each of the plurality of array waveguides have a second core geometry. The first and second core geometries may comprise different waveguide core widths, and/or different core structures. AWG temperature stability is provided by the techniques of the present invention.
    Type: Application
    Filed: October 7, 2010
    Publication date: June 16, 2011
    Applicant: AIDI CORPORATION
    Inventor: Katsunari OKAMOTO
  • Publication number: 20100272394
    Abstract: Arrayed waveguide grating (AWG) circuits are disclosed, having different radii in the slab regions to supplement and/or replace other mechanical techniques which enable athermal AWGs. Dual band, interleaved pairs of athermal AWGs are also disclosed, with improved cost, space and center wavelength properties, for, e.g., optical line terminal (OLT), and remote node (RN) applications.
    Type: Application
    Filed: February 25, 2010
    Publication date: October 28, 2010
    Applicant: AIDI CORPORATION
    Inventor: Katsunari OKAMOTO
  • Publication number: 20100245831
    Abstract: A transform spectrometer implemented on a planar waveguide circuit (PLC), having an input optical signal waveguide carrying an input optical signal to be analyzed; a plurality of couplers, each connected to the input optical signal waveguide, and each including a coupler output for carrying a coupled optical signal related to the input optical signal. An array of interleaved, asymmetrical waveguide Mach-Zehnder interferometers (MZI) is formed on the PLC, each having at least one input MZI waveguide, each MZI input waveguide receiving a coupled optical signal from a respective coupler output; wherein at least some of the input MZI waveguides intersect in a common layer of the PLC, at an angle which allows their respective coupled optical signals to transmit without unacceptable attenuation. This arrangement improves spatial efficiency of the PLC, allowing more MZIs to be implemented, resulting in increased spectral resolution.
    Type: Application
    Filed: February 23, 2010
    Publication date: September 30, 2010
    Applicant: AIDI CORPORATION
    Inventor: Katsunari OKAMOTO
  • Patent number: 7724990
    Abstract: A technique for monitoring optical power in a fiber array unit having a plurality of optical transmission waveguides terminating at an edge thereof for carrying optical signals to and/or from a PLC. A tapping filter is placed within a slit formed in the substrate and interrupting the transmission channels, thereby tapping at least some of the optical power from the channels and directing the tapped optical power toward respective photodetector channels for detection, while allowing other optical power to continue transmission in the at least one channel of the fiber array unit.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 25, 2010
    Assignee: AiDi Corporation
    Inventor: Kenzo Ishida
  • Publication number: 20100111478
    Abstract: A fiber array unit (FAU) having plurality of optical transmission channels (e.g., fiber optics) terminating at a side surface thereof for carrying optical signals to and/or from waveguides in a planar lightwave circuit (PLC). The optical transmission channels of the FAU terminate at the side surface thereof in a non-linear, cross-sectional pattern (e.g., a curved pattern). The non-linear pattern is determined by a pattern of grooves formed in a substrate of the FAU, in combination with a lid which may also have an inverse, non-linear pattern, to thereby rigidly, reliably and permanently hold the optical transmission channels in place.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 6, 2010
    Applicant: AiDi Corporation
    Inventor: Takaharu Fujiyama
  • Publication number: 20090016716
    Abstract: A technique for monitoring optical power in a fiber array unit having a plurality of optical transmission waveguides terminating at an edge thereof for carrying optical signals to and/or from a PLC. A tapping filter is placed within a slit formed in the substrate and interrupting the transmission channels, thereby tapping at least some of the optical power from the channels and directing the tapped optical power toward respective photodetector channels for detection, while allowing other optical power to continue transmission in the at least one channel of the fiber array unit.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 15, 2009
    Applicant: AIDI CORPORATION
    Inventor: Kenzo ISHIDA
  • Patent number: 7330620
    Abstract: A funnel-type planar lightwave circuit (PLC) optical splitter having an input optical waveguide, a slab waveguide receiving the input optical signal from the input optical waveguide, and output waveguides projecting from the slab region. The region connecting the slab waveguide to the output waveguides is characterized by a segmented taper structure. In another additional, or alternative aspect of the present invention, a cladding mode absorption region runs along either or both sides of the input optical waveguide. A funnel-type splitter with both a cladding mode absorption region and a segmented taper structure provides a “super” low loss splitter design, when considering both insertion loss and polarization dependent loss. Advantageously, the disclosed funnel-type PLC splitter does not require a quartz substrate due to its very low PDL, and a silicon substrate can be used. Silicon substrates are known to be lower cost, with a higher resistance to fracture.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: February 12, 2008
    Assignee: Aidi Corporation
    Inventors: Kenzo Ishida, Alan Tafapolsky, Takaharu Fujiyama
  • Publication number: 20070196050
    Abstract: A funnel-type planar lightwave circuit (PLC) optical splitter having an input optical waveguide, a slab waveguide receiving the input optical signal from the input optical waveguide, and output waveguides projecting from the slab region. The region connecting the slab waveguide to the output waveguides is characterized by a segmented taper structure. In another additional, or alternative aspect of the present invention, a cladding mode absorption region runs along either or both sides of the input optical waveguide. A funnel-type splitter with both a cladding mode absorption region and a segmented taper structure provides a “super” low loss splitter design, when considering both insertion loss and polarization dependent loss. Advantageously, the disclosed funnel-type PLC splitter does not require a quartz substrate due to its very low PDL, and a silicon substrate can be used. Silicon substrates are known to be lower cost, with a higher resistance to fracture.
    Type: Application
    Filed: February 16, 2007
    Publication date: August 23, 2007
    Applicant: AIDI CORPORATION
    Inventors: Kenzo ISHIDA, Alan TAFAPOLSKY, Takaharu FUJIYAMA